Landslide Extraction Using Mask R-CNN with Background-Enhancement Method
Abstract
:1. Introduction
- (1)
- Optimizations on deep learning model structures
- (2)
- Data enhancement and supplement for training samples
- (1)
- Developing a background-enhancement method based on image splicing and a modified CutMix [29]. While increasing the amount of training data, the backgrounds of the samples are more complex, assisting models to distinguish landslide and background objects.
- (2)
- Adding landslide-inducing topographic factors (DEM, slope, distance from river) into input training data as auxiliary information. Using landslide formation mechanism as a reference for landslide extractions.
- (3)
- Evaluating the applicability and effectiveness of our proposed methods by comparative experiments using Mask R-CNN and Ludian landslide data.
2. Study Area and Data
2.1. Study Area
2.2. Data Preparation
3. Methods
3.1. Landslide Extraction Framework
3.2. Mask R-CNN Model
3.3. Background Enhancement
- (1)
- Background enhancement by splicing images.
- (2)
- Background enhancement by a modified CutMix.
3.3.1. Background Enhancement by Splicing Images
3.3.2. Background Enhancement by a Modified CutMix
3.4. Landslide Inducers
4. Experiment
4.1. Accuracy Evaluation
4.2. Experimental Design
4.3. Results and Discussions
5. Conclusions and Prospect
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
DEM | Digital elevation model |
mIoU | Mean intersection over union |
MS COCO | Microsoft Common Objects in Context |
PSPNet | The Pyramid Scene Parsing Network |
R-CNN | Region CNN |
References
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; Luca, C.; Gueguen, E.; Marchesini, I.; Parise, M.; Carmela, V.; et al. Brief Communication: Rapid Mapping of Landslide Events: The 3 December 2013 Montescaglioso Landslide, Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 1835–1841. [Google Scholar] [CrossRef] [Green Version]
- Hölbling, D.; Füreder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sens. 2012, 4, 1310–1336. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Chen, F.; Xu, C. Landslide Detection Based on Contour-Based Deep Learning Framework in Case of National Scale of Nepal in 2015. Comput. Geosci. 2020, 135, 104388. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide Identification Using Machine Learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.B.; Panahi, M.; Hong, H.; et al. Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sens. 2018, 10, 1527. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, A.; Kerle, N. Object-Oriented Mapping of Landslides Using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wei, Y.; Wang, Q.; Xie, J.; Chen, Y.; Li, Z.; Zhou, H. A Research on Landslides Automatic Extraction Model Based on the Improved Mask R-CNN. ISPRS Int. J. Geo-Inf. 2021, 10, 168. [Google Scholar] [CrossRef]
- Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1349–1362. [Google Scholar] [CrossRef] [Green Version]
- Nava, L.; Monserrat, O.; Catani, F. Improving Landslide Detection on SAR Data Through Deep Learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, Q.; Jin, S.; Li, W.; Su, Y.; Dong, X.; Guo, Q. Loess Landslide Detection Using Object Detection Algorithms in Northwest China. Remote Sens. 2022, 14, 1182. [Google Scholar] [CrossRef]
- Mohan, A.; Kumar, B.; Dwivedi, R. Review on Remote Sensing Methods for Landslide Detection Using Machine and Deep Learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Jiang, W.; Xi, J.; Li, Z.; Ding, M.; Yang, L.; Xie, D. Landslide Detection and Segmentation Using Mask R-CNN with Simulated Hard Samples. Geomat. Inf. Sci. Wuhan Univ. 2021. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W. A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection From Single-Temporal RapidEye Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6166–6176. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, L.; Hu, H.; Xu, B.; Zhang, Y.; Li, H. Deep Fusion of Local and Non-Local Features for Precision Landslide Recognition. arXiv 2020, arXiv:2002.08547. [Google Scholar]
- Qi, W.; Wei, M.; Yang, W.; Xu, C.; Ma, C. Automatic Mapping of Landslides by the ResU-Net. Remote Sens. 2020, 12, 2487. [Google Scholar] [CrossRef]
- Ji, S.; Dawen, Y.; Shen, C.; Li, W.; Xu, Q. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Cheng, L.; Li, J.; Duan, P.; Wang, M. A Small Attentional YOLO Model for Landslide Detection from Satellite Remote Sensing Images. Landslides 2021, 18, 2751–2765. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef] [Green Version]
- Bragagnolo, L.; Rezende, L.R.; da Silva, R.V.; Grzybowski, J.M.V. Convolutional Neural Networks Applied to Semantic Segmentation of Landslide Scars. Catena 2021, 201, 105189. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. arXiv 2018, arXiv:1710.09412. [Google Scholar]
- Ghorbanzadeh, O.; Meena, S.; Blaschke, T.; Aryal, J. UAV-Based Slope Failure Detection Using Deep-Learning Convolutional Neural Networks. Remote Sens. 2019, 11, 2046. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Ningsheng, C.; Rahman, M.; Islam, M.M.; Pourghasemi, H.R.; Hussain, S.F.; Habumugisha, J.M.; Liu, E.; Zheng, H.; Ni, H.; et al. Geohazards Susceptibility Assessment along the Upper Indus Basin Using Four Machine Learning and Statistical Models. ISPRS Int. J. Geo-Inf. 2021, 10, 315. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep Learning-Based Landslide Susceptibility Mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which Precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Yun, S.; Han, D.; Chun, S.; Oh, S.J.; Yoo, Y.; Choe, J. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Shi, Z.-M.; Xiong, X.; Peng, M.; Zhang, L.; Xiong, Y.; Chen, H.-X.; Zhu, Y. Risk Assessment and Mitigation for the Hongshiyan Landslide Dam Triggered by the 2014 Ludian Earthquake in Yunnan, China. Landslides 2016, 14, 269–285. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Lingling, S.; Dou, S.; Wu, S.; Tian, Y.; Li, X. Inventory of Landslides Triggered by the 2014 MS6.5 Ludian Earthquake and Its Implications on Several Earthquake Parameters. Seismol. Geol. 2014, 36, 1186–1203. [Google Scholar]
- Wu, W.; Xu, C.; Wang, X.; Tian, Y.; Deng, F. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. J. Earth Sci. 2020, 31, 853–866. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, X.; An, X.; Cui, J. Contributing Factors to the Failure of an Unusually Large Landslide Triggered by the 2014 Ludian, Yunnan, China, Ms = 6.5 Earthquake. Nat. Hazards Earth Syst. Sci. 2016, 16, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Soares, L.P.; Dias, H.C.; Grohmann, C.H. Landslide Segmentation with U-Net: Evaluating Different Sampling Methods and Patch Sizes. arXiv 2020, arXiv:2007.06672. [Google Scholar]
- Tian, Y.; Xu, C.; Chen, J.; Hong, H. Spatial Distribution and Susceptibility Analyses of Pre-Earthquake and Coseismic Landslides Related to the 6.5 Earthquake of 2014 in Ludian, Yunan, China. Geocarto Int. 2016, 32, 978–989. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, P.; Hao, M. Landslides Triggered by the 3 August 2014 Ludian Earthquake in China: Geological Properties, Geomorphologic Characteristics and Spatial Distribution Analysis. Geomat. Nat. Hazards Risk 2016, 7, 1219–1241. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Tian, Y.; Xu, C.; Xu, X.; Chen, J. Detailed Inventory Mapping and Spatial Analyses to Landslides Induced by the 2013 Ms 6.6 Minxian Earthquake of China. J. Earth Sci. 2016, 27, 1016–1026. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef] [Green Version]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution Pattern of Earthquake-Induced Landslides Triggered by the 12 May 2008 Wenchuan Earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Pham, B.; Pradhan, B.; Bui, D.; Prakash, I.; Dholakia, M.B. A Comparative Study of Different Machine Learning Methods for Landslide Susceptibility Assessment: A Case Study of Uttarakhand Area (India). Environ. Modell. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests Techniques for Shallow Landslide Susceptibility Assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Garcia, A.; Orts, S.; Oprea, S.; Villena Martinez, V.; Rodríguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2017, arXiv:1612.01105. [Google Scholar]
Resolution | Source | Satellite | Collected Date | |
---|---|---|---|---|
Pre-landslide image | 0.27m/pixel | CNES/Airbus | Pleiades PHR1A | 30 January 2014 |
Post-landslide image | 0.27m/pixel | Maxar Technologies | GeoEye-01 | 20 August 2014 |
Predicted Value | Landslide | Background | |
---|---|---|---|
True Value | |||
Landslide | True Positive (TP) | False Negative (FN) | |
Background | False Positive (FP) | True Negative (TN) |
No. | Deep Learning Model | Training Dataset |
---|---|---|
I | Mask R-CNN | Original Satellite Images |
II | Mask R-CNN | Original Satellite Images + Landslide-inducing Data |
III | Mask R-CNN | Original Satellite Images + Background-Enhanced Samples |
IV | Mask R-CNN | Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data |
No. | Deep Learning Model | Training Dataset |
---|---|---|
V | U-Net | Original Satellite Images |
VI | U-Net | Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data |
VII | PSPNet | Original Satellite Images |
VIII | PSPNet | Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data |
Resolution | Source | Satellite | Collected Date | |
---|---|---|---|---|
Post-landslide image | 0.27 m/pixel | CNES/Airbus | Pleiades PHR1B | 5 May 2015 |
No. | Model | Input Data | Precision/% | Recall/% | F1 Score/% | mIoU/% |
---|---|---|---|---|---|---|
I | Mask R-CNN | Original Satellite Images | 67.26 | 79.31 | 72.79 | 75.53 |
II | Mask R-CNN | Original Satellite Images + Landslide-inducing Data | 78.76 | 78.31 | 78.53 | 80.11 |
III | Mask R-CNN | Original Satellite Images + Background-Enhanced Samples | 84.83 | 84.92 | 84.87 | 85.28 |
IV | Mask R-CNN | Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data | 88.68 | 89.49 | 89.08 | 89.00 |
No. | Model | Input Data | Precision/% | Recall/% | F1 Score/% | mIoU/% |
---|---|---|---|---|---|---|
V | U-Net | Original Satellite Images | 52.28 | 69.95 | 59.83 | 66.48 |
VI | U-Net | Original Satellite Images + Background-Enhanced Samples + Landslide-inducing data | 68.29 | 78.00 | 72.82 | 75.59 |
VII | PSPNet | Original Satellite Images | 56.61 | 65.86 | 60.89 | 67.52 |
VIII | PSPNet | Original Satellite Images + Background-Enhanced Samples + Landslide-inducing data | 76.02 | 66.16 | 70.74 | 74.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Zhang, F.; Xia, J.; Wu, C. Landslide Extraction Using Mask R-CNN with Background-Enhancement Method. Remote Sens. 2022, 14, 2206. https://doi.org/10.3390/rs14092206
Yang R, Zhang F, Xia J, Wu C. Landslide Extraction Using Mask R-CNN with Background-Enhancement Method. Remote Sensing. 2022; 14(9):2206. https://doi.org/10.3390/rs14092206
Chicago/Turabian StyleYang, Ruilin, Feng Zhang, Junshi Xia, and Chuyi Wu. 2022. "Landslide Extraction Using Mask R-CNN with Background-Enhancement Method" Remote Sensing 14, no. 9: 2206. https://doi.org/10.3390/rs14092206
APA StyleYang, R., Zhang, F., Xia, J., & Wu, C. (2022). Landslide Extraction Using Mask R-CNN with Background-Enhancement Method. Remote Sensing, 14(9), 2206. https://doi.org/10.3390/rs14092206