Extracting Remotely Sensed Water Quality Parameters from Shallow Intertidal Estuaries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Required Data
2.2. Methods
2.2.1. Estimation of Seabed Reflectance
2.2.2. Calculation of Rw and Kd
2.2.3. Assessing the Optimal Resolution to Use in Spatial and Temporal Corrections
2.2.4. Validating Kd
2.2.5. Calculation of Dominant Wavelength Using Rw
3. Results
3.1. Estimation of Rb in Shallow Water
3.2. The Corrected Reflectance and Assessing the Optimal Resolution
3.2.1. Correction with Temporal Method
3.2.2. Correction with Spatial Method
3.3. The Diffuse Attenuation Coefficient (Kd)
3.4. Monthly Variations in Watercolour and Kd
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Consistency Check on Kd
Seasons | Number of Images | Mean Values |
---|---|---|
Summer | 3 | 0.45, 0.42, 0.50 |
Autumn | 2 | 0.42, 0.40 |
Winter | 4 | 0.36, 0.38, 0.36, 0.40 |
Spring | 5 | 0.48, 0.5, 0.46, 0.52, 0.56 |
Appendix B
Ascertaining the Sensitivity of the Model to Assumptions
References
- Chiarelli, A.M.; Low, K.A.; Maclin, E.L.; Fletcher, M.A.; Kong, T.S.; Zimmerman, B.; Tan, C.H.; Sutton, B.P.; Fabiani, M.; Gratton, G. Ocean optics protocols for SeaWiFS validation. Photonics 2019, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattuso, J.-P.; Gentili, B.; Duarte, C.M.; Kleypas, J.; Middelburg, J.J.; Antoine, D. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 2006, 3, 489–513. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.R.; Heck, K.L. Approaching a Tipping Point? Herbivore Carrying Capacity Estimates in a Rapidly Changing, Seagrass-Dominated Florida Bay. Estuaries Coasts 2021, 44, 522–534. [Google Scholar] [CrossRef]
- Sundbäck, K.; Miles, A. Role of microphytobenthos and denitrification for nutrient turnover in embayments with floating macroalgal mats: A spring situation. Aquat. Microb. Ecol. 2002, 30, 91–101. [Google Scholar] [CrossRef]
- Mangan, S.; Lohrer, A.M.; Thrush, S.F.; Pilditch, C.A. Water column turbidity not sediment nutrient enrichment moderates microphytobenthic primary production. J. Mar. Sci. Eng. 2020, 8, 732. [Google Scholar] [CrossRef]
- Thrush, S.F.; Hewitt, J.E.; Gladstone-Gallagher, R.V.; Savage, C.; Lundquist, C.; O’Meara, T.; Vieillard, A.; Hillman, J.R.; Mangan, S.; Douglas, E.J. Cumulative stressors reduce the self-regulating capacity of coastal ecosystems. Ecol. Appl. 2021, 31, e02223. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Bouchard Jr, R.W.; Finlay, J.C.; Griffin, C.G.; Olmanson, L.G.; Anderson, J.P.; Arnold, W.A.; Hozalski, R. Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: Implications for trophic state assessment. Ecol. Appl. 2019, 29, e01871. [Google Scholar] [CrossRef]
- Kamerosky, A.; Cho, H.; Morris, L. Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS. Remote Sens. 2015, 7, 1441–1460. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, M.; Nguyen, U.; Allan, M.; van der Woerd, H. Colour Classification of 1486 Lakes across a Wide Range of Optical Water Types. Remote Sens. 2018, 10, 1273. [Google Scholar] [CrossRef] [Green Version]
- Woerd, H.J.; Wernand, M.R. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [Google Scholar] [CrossRef]
- Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulas; Wiley: Hoboken, NJ, USA, 1982; ISBN 978-0-471-39918-6. [Google Scholar]
- van der Woerd, H.; Wernand, M. Hue-Angle Product for Low to Medium Spatial Resolution Optical Satellite Sensors. Remote Sens. 2018, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Kanno, A.; Tanaka, Y.; Sekine, M. Validation of shallow-water reflectance model for remote sensing of water depth and bottom type by radiative transfer simulation. J. Appl. Remote Sens. 2013, 7, 073516. [Google Scholar] [CrossRef] [Green Version]
- McKinna, L.I.; Werdell, P.J. Approach for identifying optically shallow pixels when processing ocean-color imagery. Opt. Express 2018, 26, A915–A928. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Palandro, D.; Hu, C.; Andrefouet, S.; Muller-Karger, F.E. Synoptic water clarity assessment in the Florida Keys using diffuse attenuation coefficient estimated from Landsat imagery. Hydrobiologia 2004, 530, 489–493. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. Particle size effects on soil reflectance explained by an analytical radiative transfer model. Remote Sens. Environ. 2018, 210, 375–386. [Google Scholar] [CrossRef]
- Maritorena, S.; Morel, A.; Gentili, B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnol. Oceanogr. 1994, 39, 1689–1703. [Google Scholar] [CrossRef]
- Mobley, C.D.; Sundman, L.K. Hydrolight 5 Ecolight 5; Sequoia Scientific Inc.: Bellevue, WA, USA, 2008; Available online: http://data.moby.mlml.sjsu.edu/mobyuncert/self_shading/docs/hydrolite/HE5TechDoc.pdf (accessed on 15 November 2022).
- Albert, A.; Mobley, C. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Opt. Express 2003, 11, 2873–2890. [Google Scholar] [CrossRef]
- Tay, H.W.; Bryan, K.R.; Pilditch, C.A.; Park, S.; Hamilton, D.P. Variations in nutrient concentrations at different time scales in two shallow tidally dominated estuaries. Mar. Freshw. Res. 2011, 63, 95–109. [Google Scholar] [CrossRef]
- Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. A Comparative Assessment of Ensemble-Based Machine Learning and Maximum Likelihood Methods for Mapping Seagrass Using Sentinel-2 Imagery in Tauranga Harbor, New Zealand. Remote Sens. 2020, 12, 355. [Google Scholar] [CrossRef]
- Hume, T.M.; Green, M.O.; Elliott, S. Tauranga Harbour Sediment Study: Assessment of Predictions for Management: Environment Bay of Penty. 2010. Available online: https://atlas.boprc.govt.nz/api/v1/edms/document/A3888411/content (accessed on 15 November 2022).
- Stewart, B.T. Investigating Groundwater Derived Nutrient Fluxes within Tauranga Harbour, New Zealand; The University of Waikato: Hamilton, New Zealand, 2021; Available online: https://researchcommons.waikato.ac.nz/handle/10289/14405 (accessed on 15 November 2022).
- Rullens, V.; Stephenson, F.; Lohrer, A.M.; Townsend, M.; Pilditch, C.A. Combined species occurrence and density predictions to improve marine spatial management. Ocean Coast. Manag. 2021, 209, 105697. [Google Scholar] [CrossRef]
- Clark, D.; Taiapa, C.; Sinner, J.; Taikato, V.; Culliford, D.; Battershill, C.N.; Ellis, J.I.; Hewitt, J.E.; Gower, F.; Borges, H. 2016 Subtidal Ecological Survey of Tauranga Harbour and Development of Benthic Health Models; Massey University: Palmerston North, New Zealand, 2018; Available online: https://hdl.handle.net/10289/12337 (accessed on 15 November 2022).
- Ellis, J.; Clark, D.; Hewitt, J.; Taiapa, C.; Sinner, J.; Patterson, M.; Hardy, D.; Park, S.; Gardner, B.; Morrison, A. Ecological Survey of Tauranga Harbour; Cawthron Institute: Nelson, New Zealand, 2017; Available online: https://hdl.handle.net/10289/9515 (accessed on 15 November 2022).
- McFeeters, S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- McFeeters, S. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.N.; Kelble, C.R.; Ortner, P.B.; Rudnick, D.T. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indic. 2009, 9, S56–S67. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Bowers, D.G.; Evans, D.; Thomas, D.N.; Ellis, K.; Williams, P.J.l.B. Interpreting the colour of an estuary. Estuar. Coast. Shelf Sci. 2004, 59, 13–20. [Google Scholar] [CrossRef]
- BOPRC. NERMN Estuary Water Quality Report 2014. 2014. Available online: https://cdn.boprc.govt.nz/media/433844/nermn-estuary-water-quality-report-2014.pdf (accessed on 15 November 2022).
- Lunetta, R.S.; Knight, J.F.; Paerl, H.W.; Streicher, J.J.; Peierls, B.L.; Gallo, T.; Lyon, J.G.; Mace, T.H.; Buzzelli, C.P. Measurement of water colour using AVIRIS imagery to assess the potential for an operational monitoring capability in the Pamlico Sound Estuary, USA. Int. J. Remote Sens. 2009, 30, 3291–3314. [Google Scholar] [CrossRef]
- Cussioli, M.C.; Bryan, K.R.; Pilditch, C.A.; de Lange, W.P.; Bischof, K. Light penetration in a temperate meso-tidal lagoon: Implications for seagrass growth and dredging in Tauranga Harbour, New Zealand. Ocean Coast. Manag. 2019, 174, 25–37. [Google Scholar] [CrossRef]
- Fujiki, T.; Taguchi, S. Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J. Plankton Res. 2002, 24, 859–874. [Google Scholar] [CrossRef] [Green Version]
- Gall, M.; Swales, A.; Davies-Colley, R.; Bremner, D. Predicting visual clarity and light penetration from water quality measures in New Zealand estuaries. Estuar. Coast. Shelf Sci. 2019, 219, 429–443. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C. Diffuse attenuation coefficients Kd (PAR) at the estuarine North Sea–Baltic Sea transition: Time-series, partitioning, absorption, and scattering. Estuar. Coast. Shelf Sci. 2004, 61, 251–259. [Google Scholar] [CrossRef]
- Parshotam, A.; Wadhwa, S.; Mullan, B. Tauranga Harbour Sediment Study: Sediment Load Model Implementation and Validation; NIWA Client Report HAM2009-007: 2009; NIWA: Hamilton, New Zealand, 2009; Available online: https://atlas.boprc.govt.nz/api/v1/edms/document/A3888403/content (accessed on 15 November 2022).
- Davies-Colley, R.; Healy, T. Sediment and hydrodynamics of the Tauranga Entrance to Tauranga Harbour. N. Z. J. Mar. Freshw. Res. 1978, 12, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Cussioli, M.C.; Seeger, D.; Pratt, D.R.; Bryan, K.R.; Bischof, K.; de Lange, W.P.; Bornman, J.F.; Pilditch, C.A. Spectral differences in the underwater light regime caused by sediment types in New Zealand estuaries: Implications for seagrass photosynthesis. Geo-Mar. Lett. 2020, 40, 217–225. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology 2021, 8, 59. [Google Scholar] [CrossRef]
- Liu, T.; Jin, H.; Li, A.; Fang, H.; Wei, D.; Xie, X.; Nan, X. Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method. Remote Sens. 2022, 14, 4733. [Google Scholar] [CrossRef]
- Verpoorter, C.; Carrère, V.; Combe, J.P. Visible, near-infrared spectrometry for simultaneous assessment of geophysical sediment properties (water and grain size) using the Spectral Derivative–Modified Gaussian Model. J. Geophys. Res. Earth Surf. 2014, 119, 2098–2122. [Google Scholar] [CrossRef]
Year | Band | a1 | a2 | r2 | Standard Deviation of Rb |
---|---|---|---|---|---|
2018 | Blue | −0.008 | 0.107 | 0.61 | 0.015 |
Green | −0.010 | 0.120 | 0.66 | 0.018 | |
Red | −0.006 | 0.105 | 0.45 | 0.018 | |
2019 | Blue | −0.008 | 0.102 | 0.64 | 0.013 |
Green | −0.007 | 0.112 | 0.53 | 0.016 | |
Red | −0.007 | 0.107 | 0.55 | 0.015 | |
2020 | Blue | −0.006 | 0.090 | 0.72 | 0.015 |
Green | −0.008 | 0.119 | 0.61 | 0.020 | |
Red | −0.006 | 0.102 | 0.56 | 0.016 |
Band | Evaluator | Monthly | Seasonally | Annually |
---|---|---|---|---|
Blue | STD | 0.012 | 0.011 | 0.012 |
n | 17.98% | 35.62% | 54.06% | |
Green | STD | 0.011 | 0.010 | 0.013 |
n | 16.28% | 27.21% | 50.18% | |
Red | STD | 0.007 | 0.006 | 0.008 |
n | 15.15% | 34.61% | 52.69% |
Band | Evaluator | 40 m | 60 m | 80 m | 100 m |
---|---|---|---|---|---|
Blue | STD | 0.012 | 0.008 | 0.012 | 0.011 |
n | 16.35% | 19.67% | 20.18% | 21.89% | |
Green | STD | 0.014 | 0.013 | 0.011 | 0.012 |
n | 15.72% | 17.31% | 18.65% | 23.54% | |
Red | STD | 0.010 | 0.009 | 0.011 | 0.010 |
n | 17.19% | 18.85% | 20.72% | 21.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Z.; Bryan, K.R.; Lehmann, M.K.; Pilditch, C.A. Extracting Remotely Sensed Water Quality Parameters from Shallow Intertidal Estuaries. Remote Sens. 2023, 15, 11. https://doi.org/10.3390/rs15010011
Shao Z, Bryan KR, Lehmann MK, Pilditch CA. Extracting Remotely Sensed Water Quality Parameters from Shallow Intertidal Estuaries. Remote Sensing. 2023; 15(1):11. https://doi.org/10.3390/rs15010011
Chicago/Turabian StyleShao, Zhanchao, Karin R. Bryan, Moritz K. Lehmann, and Conrad A. Pilditch. 2023. "Extracting Remotely Sensed Water Quality Parameters from Shallow Intertidal Estuaries" Remote Sensing 15, no. 1: 11. https://doi.org/10.3390/rs15010011
APA StyleShao, Z., Bryan, K. R., Lehmann, M. K., & Pilditch, C. A. (2023). Extracting Remotely Sensed Water Quality Parameters from Shallow Intertidal Estuaries. Remote Sensing, 15(1), 11. https://doi.org/10.3390/rs15010011