The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave Breaking Event over the Tibetan Plateau in Mid-March 2006
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. ERA-Interim Reanalysis Data
2.1.2. Aura-HIRDLS Satellite Data
2.2. Methods
2.2.1. Definition of RWB
2.2.2. Local Eliassen–Palm Flux
2.2.3. Weather Research and Forecasting Model
2.2.4. FLEXPART Lagrangian Trajectory Model
3. Results
3.1. Dynamic Background of the RWB Event
3.2. Evolution of Thermal Structure and Ozone Concentration in the UTLS during the RWB
3.3. Transport Pathway and Equivalent Mass of STE
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.; Hu, Y.; Zhang, J.; Xie, F.; Tian, W. Record arctic ozone loss in spring 2020 is likely caused by north pacific warm sea surface temperature anomalies. Adv. Atmos. Sci. 2021, 38, 1723–1736. [Google Scholar] [CrossRef]
- Xie, F.; Tian, W.; Zhou, X.; Zhang, J.; Xia, Y.; Lu, J. Increase in lower stratospheric water vapor in the past 100 years related to tropical Atlantic warming. Geophys. Res. Lett. 2021, 47, e2020GL090539. [Google Scholar] [CrossRef]
- Yu, P.; Davis, S.M.; Toon, O.B.; Portmann, R.W.; Bardeen, C.G.; Barnes, J.E.; Telg, H.; Maloney, C.; Rosenlof, K.H. Persistent stratospheric warming due to 2019-20 Australian wildfire. Geophys. Res. Lett. 2021, 48, e2021GL092609. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Xie, F.; Chipperfield, M.P.; Feng, W.; Son, S.W. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Comm. 2018, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, Q.; Li, Y.; Zhao, Y.; Lin, Y.; Jiang, Y. Impacts of the Indo-Pacific warm pool on lower stratospheric watervapor: Seasonality and hemispheric contrasts. J. Geophys. Res. Atmos. 2021, 126, e2020JD034363. [Google Scholar] [CrossRef]
- Chang, S.; Li, Y.; Shi, C.; Guo, D. Combined effects of the ENSO and the QBO on the ozone valley over the Tibetan Plateau. Remote Sens. 2022, 14, 4935. [Google Scholar] [CrossRef]
- Holton, J.; Haynes, P.; Mcintyre, M.; Douglass, A.; Rood, R.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Bian, J.; Li, D.; Bai, Z.; Li, Q.; Lyu, D.; Zhou, X. Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon. Natl. Sci. Rev. 2020, 7, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Bian, J.; Lü, D. Advances and Prospects in the Study of Stratosphere-Troposphere Exchange. Chin. J. Atmos. Sci. 2006, 30, 813–820. (In Chinese) [Google Scholar]
- Wang, W.; Zuo, Q.; Wang, H.; Fan, W.; Bian, J.; Peng, Y.; Li, X. The structure of O3/H2O mixing relationships in the tropopause transition layer in middle and high latitudes of the Northern Hemisphere. Chin. J. Geophys. 2010, 53, 2805–2816. [Google Scholar]
- Pan, L.L.; Bowman, K.P.; Atlas, E.L.; Wofsy, S.; Zhang, F.; Bresch, J.; Ridley, B.; Pittman, J.; Homeyer, C.; Romashkin, P.; et al. The stratosphere–troposphere analyses of regional transport 2008 Experiment. Bul. Am. Meteorol. Soc. 2010, 91, 327–342. [Google Scholar] [CrossRef]
- Tian, H.; Tian, W.; Luo, J.; Zhang, J.; Zhang, M. Climatology of cross-tropopause mass exchange over the Tibetan Plateau and its surroundings. Inter. J. Clim. 2017, 37, 3999–4014. [Google Scholar] [CrossRef]
- Yu, P.; Rosenlof, K.H.; Liu, S.; Telg, H.; Bai, X.; Portmann, R.W.; Rollins, A.W.; Pan, L.L.; Toon, O.B.; Bian, J.; et al. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proc. Natl. Acad. Sci. USA 2017, 114, 6972–6977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Bian, J. Case analyses and numerical simulation of transport process caused by convection associated with northeast cold vortex. Chin. J. Geophys. 2018, 61, 3607–3616. [Google Scholar]
- Shi, C.; Guo, D.; Li, H.; Zheng, B.; Liu, R. Stratosphere-troposphere exchange corresponding to a deep convection in warm sector and abnormal subtropical front induced by a cutoff low over East Asia. Chin. J. Geophys. 2014, 57, 1–10. [Google Scholar]
- Chen, Q.; Gao, G.; Li, Y.; Cai, H.; Zhou, X.; Wang, Z. Main detrainment height of deep convection systems over the Tibetan plateau and its southern slope. Adv. Atmos. Sci. 2019, 36, 1078–1088. [Google Scholar] [CrossRef]
- Yan, Q.; Luo, J.; Shang, L.; Li, Y.; Suo, C.; Cui, Q. A case study of stratosphere -troposphere exchange during meiyu season. J. Arid. Meteorol. 2017, 35, 12–22. (In Chinese) [Google Scholar]
- Chen, B.; Xu, X.; Yang, S.; Zhao, T. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach. Atmos. Chem. Phys. 2012, 13, 5827–5839. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhou, T.; Ma, L.; Shi, C.; Guo, D.; Chen, L. Statistical analysis of the spatiotemporal distribution of ozone induced by cut-off lows in the upper troposphere and lower stratosphere over northeast Asia. Atmosphere 2019, 10, 696. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Cai, W.; Guo, D. Composition and thermal structure of the upper troposphere and lower stratosphere in a penetrating mesoscale convective complex determined by satellite observations and model simulations. Adv. Meteorol. 2017, 2017, 6404796. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Tian, W.; Chen, Z.; Zhang, J. Upward transport of air mass during a generation of orographic waves in the UTLS over the Tibetan Plateau. Chin. J. Geophys. 2016, 59, 791–802. [Google Scholar]
- Cooper, O.; Foster, C.; Parrish, D.; Dunlea, E.; Hübler, G.; Fehsenfeld, F.; Holloway, J.; Oltmans, S.; Johnson, B.; Wimmers, A.; et al. On the life cycle of a stratospheric intrusion and its dispersion into polluted warm conveyor belts. J. Geophys. Res. Atmos. 2004, 109, D23S09. [Google Scholar] [CrossRef]
- Li, D.; Bian, J.; Fan, Q. A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Sci. Chin. Earth. Sci. 2015, 58, 116–128. [Google Scholar] [CrossRef]
- Pan, L.L.; Randel, W.J.; Gille, J.C.; Hall, W.; Nardi, B.; Massie, S.; Yudin, V.; Khosravi, R.; Konopka, P.; Tarasick, D. Tropospheric intrusions associated with the secondary tropopause. J. Geophys. Res. Atmos. 2009, 114, D10302. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, C.; Kerkweg, A.; Hoor, P.; Jöckel, P. Stratosphere-troposphere exchange in the vicinity of a tropopause fold. Atmos. Chem. Phys. 2016, 16, 1–26. [Google Scholar]
- Homeyer, C.R.; Bowman, K.P. Rossby Wave Breaking and Transport between the Tropics and Extratropics above the Subtropical Jet. J. Atmos. Sci. 2013, 70, 607–626. [Google Scholar] [CrossRef] [Green Version]
- Postel, G.A. A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci. 1999, 56, 3605–3611. [Google Scholar] [CrossRef]
- Wernli, H.; Sprenger, M. Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause. J. Atmos. Sci. 2007, 64, 1569–1586. [Google Scholar] [CrossRef]
- Waugh, D.W.; Polvani, L.M. Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett. 2000, 27, 3857–3860. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Hegglin, M.I.; Daffer, W.H.; Schwartz, M.; Santee, M.; Pawson, S. Climatology of Upper Tropospheric–Lower Stratospheric (UTLS) Jets and Tropopauses in MERRA. J. Clim. 2014, 27, 3248–3271. [Google Scholar] [CrossRef]
- Homeyer, C.; Bowman, K.; Pan, L.; Atlas, E.; Gao, R.; Campos, T. Dynamical and chemical characteristics of tropospheric intrusions observed during START08. J. Geophys. Res. Atmos. 2011, 116, D06111. [Google Scholar] [CrossRef] [Green Version]
- Kunz, A.; Sprenger, M.; Wernli, H. Climatology of potential vorticity streamers and associated isentropic transport pathways across PV gradient barriers. J. Geophys. Res. Atmos. 2015, 120, 3802–3821. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Skerlak, B.; Sprenger, M.; Wernli, H. A global climatology of stratosphere –troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys. 2014, 14, 913–937. [Google Scholar] [CrossRef] [Green Version]
- Gille, J.; Barnett, J.; Arter, P.; Barker, M.; Bernath, P.; Boone, C. High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data. J. Geophys. Res. Atmos. 2008, 113, D16S43. [Google Scholar] [CrossRef] [Green Version]
- Thorncroft, C.D.; Hoskins, B.J.; Mcintyre, M.E. Two paradigms of baroclinic -wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc. 1993, 119, 17–55. [Google Scholar] [CrossRef]
- Trenberth, K.E. An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J. Atmos. Sci. 1986, 43, 2070–2087. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter Monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.Y. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318. [Google Scholar] [CrossRef] [Green Version]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. J. Atmos. Sci. 2020, 67, 171. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Kunz, A.; Konopka, P.; Müller, R.; Pan, L. Dynamical tropopause based on isentropic potential vorticity gradients. J. Geophys. Res. Atmos. 2011, 116, D01110. [Google Scholar] [CrossRef] [Green Version]
- Simmons, A.J.; Hoskins, B.J. Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci. 1980, 37, 1679–1684. [Google Scholar] [CrossRef]
- Simmons, A.J.; Hoskins, B.J. The Life Cycles of Some Nonlinear Baroclinic Waves. J. Atmos. Sci. 1978, 35, 414–432. [Google Scholar] [CrossRef]
- Lamarque, J.F.; Hess, P.G. Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding. J. Atmos. Sci. 1994, 51, 2246–2269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Jin, X.; Shi, C.; Chen, D. The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave Breaking Event over the Tibetan Plateau in Mid-March 2006. Remote Sens. 2023, 15, 155. https://doi.org/10.3390/rs15010155
Zhu J, Jin X, Shi C, Chen D. The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave Breaking Event over the Tibetan Plateau in Mid-March 2006. Remote Sensing. 2023; 15(1):155. https://doi.org/10.3390/rs15010155
Chicago/Turabian StyleZhu, Jinyao, Xin Jin, Chunhua Shi, and Dan Chen. 2023. "The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave Breaking Event over the Tibetan Plateau in Mid-March 2006" Remote Sensing 15, no. 1: 155. https://doi.org/10.3390/rs15010155
APA StyleZhu, J., Jin, X., Shi, C., & Chen, D. (2023). The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave Breaking Event over the Tibetan Plateau in Mid-March 2006. Remote Sensing, 15(1), 155. https://doi.org/10.3390/rs15010155