Ionospheric Perturbations Due to Large Thunderstorms and the Resulting Mechanical and Acoustic Signatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lightning Data
2.2. TEC Data Extraction
2.3. Analysis
3. Results
3.1. Thunderstorm Effects and Large TEC Response
3.2. Low Amplitude TEC Responses during Large Thunderstorms with TLEs
3.3. Gravity and Acoustic Waves
4. Discussion
5. Conclusions
- Large variations of about a 10–15% TEC increase/depletion in comparison with average diurnal peak TECs demonstrated severe impacts on the ionosphere.
- Spatial concentric ionospheric gravity wave signatures were observed with a 2–60 min period and dominant oscillations between 16 and 60 min.
- About a 30 min delay between the Peak TEC deviation and the time of sprite occurrence was observed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Z.; Cumber, S.A.; Su, H.-T.; Hsu, R.R. Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses. J. Geophys. Res. 2007, 112, A06318. [Google Scholar] [CrossRef]
- Lay, E.H.; Shao, X.-M. High temporal and spatial resolution detection of D-layer fluctuations by using time-domain lightning waveforms. J. Geophys. Res. 2011, 116, A01317. [Google Scholar] [CrossRef]
- Lay, E.H.; Shao, X.-M. Multi-station probing of thunderstorm-generated D-layer fluctuations by using time-domain lightning waveforms. Geophys. Res. Lett. 2021, 38, L23806. [Google Scholar] [CrossRef]
- Lay, E.H.; Shao, X.M.; Carrano, C.S. Variation in total electron content above large thunderstorms. Geophys. Res. Lett. 2013, 40, 1945–1949. [Google Scholar] [CrossRef]
- Shao, X.M.; Lay, E.H.; Jacobson, A.R. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat. Geosci. 2013, 6, 29–33. [Google Scholar] [CrossRef]
- Xu, J.; Li, Q.; Yue, J.; Hoffmann, L.; Straka, W.C.; Wang, C.; Liu, M.; Yuan, W.; Han, S.; Miller, S.D.; et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites. J. Geophys. Res. Atmos. 2015, 120, 11058–11078. [Google Scholar] [CrossRef]
- Yu, B.; Xue, X.; Lu, G.; Kuo, C.; Dou, X.; Gao, Q.; Tang, Y. The enhancement of neutral metal Na layer above thunderstorms. Geophys. Res. Lett. 2017, 44, 9555–9563. [Google Scholar] [CrossRef]
- Cheng, Z.; Cummer, S.A. Broadband VLF measurements of lightning-induced ionospheric perturbations. Geophys. Res. Lett. 2005, 32, L08804. [Google Scholar] [CrossRef]
- Lay, E.H.; Shao, X.-M.; Kendrick, A.K.; Carrano, C.S. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms. J. Geophys. Res. Space Physics 2015, 120, 6010–6020. [Google Scholar] [CrossRef]
- Yu, B.; Xue, X.; Lu, G.; Ma, M.; Dou, X.; Qie, X.; Ning, B.; Hu, L.; Wu, J.; Chi, Y. Evidence for lightning-associated enhancement of the ionospheric sporadic E layer dependent on lightning stroke energy. J. Geophys. Res. Space Physics 2015, 120, 9202–9212. [Google Scholar] [CrossRef]
- Ogunsua, B.O.; Srivastava, A.; Bian, J.; Qie, X.; Wang, D.; Jiang, R.; Yang, J. Significant Day-time Ionospheric Perturbation by Thunderstorms along the West African and Congo Sector of Equatorial Region. Sci. Rep. 2020, 10, 8466. [Google Scholar] [CrossRef]
- Pasko, V.P.; Inan, U.S.; Taranenko, Y.N.; Bell, T.F. Heating, ionization and upward discharges in the mesosphere due to intense Quasi electrostatic thundercloud fields. Geophys. Res. Lett. 1995, 22, 365–368. [Google Scholar] [CrossRef]
- Inan, U.S.; Pasko, V.P.; Bell, T.F. Sustained heating of the ionosphere above thunderstorms as evidenced in the early/fast VLF events. Geophys. Res. Lett. 1995, 23, 1067–1070. [Google Scholar] [CrossRef]
- Yang, J.; Qie, X.; Zhang, G.; Zhao, Y.; Zhang, T. Red sprites over thunderstorms in the coast of Shandong province, China. Chin. Sci. Bull. 2008, 53, 1079–1086. [Google Scholar]
- Huang, A.; Lu, G.; Zhang, H.; Liu, F.; Fan, Y.; Zhu, B.; Yang, J.; Wang, Z. Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China. Adv. Atmos. Sci. 2018, 35, 1396–1414. [Google Scholar] [CrossRef]
- Kabirzadeh, R.; Marshall, R.A.; Inan, U.S. Early/fast VLF events produced by the quiescent heating of the lower ionosphere by thunderstorms. J. Geophys. Res. Atmos. 2017, 122, 6217–6230. [Google Scholar] [CrossRef]
- Davis, C.J.; Johnson, C.G. Lightning-induced intensification of the ionospheric sporadic E layer. Nature 2005, 435, 799–801. [Google Scholar] [CrossRef]
- Soula, S.; Mlynarczyk, J.; Füllekrug, M.; Georgis, J.-F.; van der Velde, O.; Fabró, F. Dancing sprites: Detailed analysis of two case studies. J. Geophys. Res. Atmos. 2017, 122, 3173–3192. [Google Scholar] [CrossRef]
- Yang, J.; Qie, X.S.; Feng, G.L. Characteristics of one sprite-producing summer thunderstorm. Atmos. Res. 2013, 127, 90–115. [Google Scholar] [CrossRef]
- Yang, J.; Sato, M.; Liu, N.; Lu, G.; Wang, Y.; Wang, Z. A gigantic jet observed over a mesoscale convective system in midlatitude region. J. Geophys. Res. Atmos. 2018, 123, 977–996. [Google Scholar] [CrossRef]
- Yang, J.; Liu, N.; Sato, M.; Lu, G.; Wang, Y.; Feng, G. Characteristics of thunderstorm structure lightning activity causing negative positive sprites. J. Geophys. Res. Atmos. 2018, 123, 8190–8207. [Google Scholar] [CrossRef]
- Liu, N.; Dwyer, J.R.; Stenbaek-Nielsen, H.C.; McHarg, M.G. Sprite streamer initiation from natural mesospheric structures. Nat. Comm. 2015, 6, 7540. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Pasko, V.P.; McHarg, M.G.; Stenbeak-Nielsen, H.C. Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nat. Comm. 2014, 5, 3740. [Google Scholar] [CrossRef]
- Dowden, R.L.; Holzworth, R.H.; Rodger, C.J.; Lichtenberger, J.; Thomson, N.R.; Jacobson, A.R.; Lay, E.; Brundell, J.B.; Lyons, T.J.; Kawasaki, Z.; et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antennas Propag. Mag. 2008, 50, 40–60. [Google Scholar] [CrossRef]
- Abarca, S.F.; Corbosiero, K.L.; Galarneau, T.J. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res. Atmos. 2010, 115, 1–11. [Google Scholar] [CrossRef]
- Abreu, D.; Chandan, D.; Holzworth, R.H.; Strong, K. A performance assessment of the World-Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN). Atmos. Meas. Tech. 2010, 3, 1143–1153. [Google Scholar] [CrossRef]
- Srivastava, A.; Tian, Y.; Qie, X.; Wang, D.; Sun, Z.; Yuan, S.; Wang, Y.; Chen, Z.; Xu, W.; Zhang, H.; et al. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Feng, G.; Qie, X.; Yuan, T.; Niu, S. Analysis on lightning activity and precipitation structure of hailstorms. Sci. China Ser. D Earth Sci. 2007, 50, 629–639. [Google Scholar] [CrossRef]
- Liu, D.; Qie, X.; Xiong, Y.; Feng, G. Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci. 2011, 28, 866–878. [Google Scholar] [CrossRef]
- Pan, L.; Qie, X.; Wang, D. Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv. Atmos. Sci. 2014, 31, 581–592. [Google Scholar] [CrossRef]
- Qie, X.; Yuan, S.; Chen, Z.; Wang, D.; Liu, D.; Sun, M.; Sun, Z.; Srivastava, A.; Zhang, H.; Lu, J.; et al. Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Sci. China Earth Sci. 2021, 64, 10–26. [Google Scholar] [CrossRef]
- Lu, J.; Qie, X.; Xiao, X.; Jiang, R.; Mansell, E.R.; Fierro, A.O.; Liu, D.; Chen, Z.; Yuan, S.; Sun, M.; et al. Effects of convective mergers on the evolution of microphysical electrical activity in a severe squall line simulated by WRF coupled with explicit electrification scheme. J. Geophys. Res. Atmos. 2022, 127, e2021JD036398. [Google Scholar] [CrossRef]
- Chen, Z.; Qie, X.; Sun, J.; Xiao, X.; Zhang, Y.; Cao, D.; Yang, J. Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing. Remote Sens. 2021, 13, 1746. [Google Scholar] [CrossRef]
- Xiao, X.; Qie, X.; Chen, Z.; Lu, J.; Ji, L.; Wang, D.; Zhang, L.; Chen, M.; Chen, M. Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing. Remote Sens. 2021, 13, 2084. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, G.; Shi, T.; Ma, M.; Zhu, B.; Liu, D.; Peng, C.; Wang, Y. Enhancement of cloud-to-ground lightning activity caused by the urban effect: A case study in the Beijing metropolitan area. Remote Sens. 2021, 13, 1228. [Google Scholar] [CrossRef]
- Xu, M.; Qie, X.; Pang, W.; Shi, G.; Liang, L.; Sun, Z.; Yuan, S.; Zhu, K.; Zhao, P. Lightning climatology across the Chinese continent from 2010 to 2020. Atmos. Res. 2022, 275, 106251. [Google Scholar] [CrossRef]
- Ciraolo, L.; Spalla, P. Comparison of TEC evaluation from NNSS and GPS. Radio Sci. 1997, 32, 1071–1080. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S.M. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geodesy 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Design and Characteristics of the GPS Ionospheric Time Delay Algorithm for Single Frequency Users. In Proceedings of the PLANS’86—Position Location and Navigation Symposium, Las Vegas, NV, USA, 4–7 November 1986; pp. 280–286. [Google Scholar]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqvister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Norsuzila, Y.; Abdullah, M.; Ismail, M.; Zaharim, A. Model validation for GPS total electron content using 10th polynomial function technique at an equatorial region. WSEAS Trans. Comp. 2009, 8, 1533–1542. [Google Scholar]
- Srivastava, A.; Liu, D.; Xu, C.; Yuan, S.; Wang, D.; Ogunsua, B.; Sun, Z.; Chen, Z.; Zhang, H. Lightning nowcasting with an algorithm of thunderstorm tracking based on lightning location data over the Beijing area. Adv. Atmos. Sci. 2022, 39, 178–188. [Google Scholar] [CrossRef]
- Ozeki, M.; Heki, K. Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array. J. Geophys. Res. 2010, 115, A09314. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, G.; Ma, M.; Zhang, H.; Fan, Y.; Liu, G.; Wan, Z.; Wang, Y.; Peng, K.-M.; Peng, C.; et al. Triangulation of red sprites observed above a mesoscale convective system in North China. Earth Planet. Phys. 2019, 3, 111–125. [Google Scholar] [CrossRef]
- Vadas, S.L.; Fritts, D.C. Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J. Geophys. Res. 2006, 111, A10S12. [Google Scholar] [CrossRef]
- Yue, J.; Vadas, S.L.; She, C.-Y.; Nakamura, T.; Reising, S.C.; Liu, H.-L.; Stamus, P.; Krueger, D.A.; Lyons, W.; Li, T. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res. 2009, 114, D06104. [Google Scholar] [CrossRef]
- Lyons, W.A.; Nelson, T.E.; Williams, E.R.; Cummer, S.A.; Stanley, M.A. Characteristics of Sprite-Producing Positive Cloud-to-Ground Lightning during the 19 July 2000 STEPS Mesoscale Convective Systems. Mon. Weather. Rev. 2003, 131, 2417–2427. [Google Scholar] [CrossRef]
- Vadas, S.L. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res. 2007, 112, A06305. [Google Scholar] [CrossRef]
- Vadas, S.L.; Yue, J.; She, C.Y.; Stamus, P.; Liu, A.Z. A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J. Geophys. Res. 2009, 114, D06103. [Google Scholar] [CrossRef]
- Suzuki, T.; Kamogawa, M.; Fujiwara, H.; Hayashi, S. MCS Stratiform and Convective Regions Associated with Sprites Observed from Mt. Fuji. Atmosphere 2022, 13, 1460. [Google Scholar] [CrossRef]
- Azeem, I.; Yue, J.; Hoffmann, L.; Miller, S.D.; Straka, W.C., III; Crowley, G. Multi-sensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys. Res. Lett. 2015, 42, 7874–7880. [Google Scholar] [CrossRef]
- Blanc, E.; Farges, T.; Le Pichon, A.; Heinrich, P. Ten-year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res. Atmos. 2014, 119, 6409–6418. [Google Scholar] [CrossRef]
- Figueras i Ventura, J.; Pineda, N.; Besic, N.; Grazioli, J.; Hering, A.; van der Velde, O.A.; Romero, D.; Sunjerga, A.; Mostajabi, A.; Azadifar, M.; et al. Analysis of the lightning production of convective cells. Atmos. Meas. Tech. 2019, 12, 5573–5591. [Google Scholar] [CrossRef]
- Voormansik, T.; Müürsepp, T.; Post, P. Climatology of Convective Storms in Estonia from Radar Data and Severe Convective Environments. Remote Sens. 2021, 13, 2178. [Google Scholar] [CrossRef]
- Liu, T.; Yu, Z.; Ding, Z.; Nie, W.; Xu, G. Observation of Ionospheric Gravity Waves Introduced by Thunderstorms in Low Latitudes China by GNSS. Remote Sens. 2021, 13, 4131. [Google Scholar] [CrossRef]
- Basu, B. On the linear theory of equatorial plasma instability: Comparison of different descriptions. J. Geophys. Res. 2002, 107, 1199. [Google Scholar] [CrossRef]
- Basu, B. Characteristics of electromagnetic Rayleigh-Taylor modes in nighttime equatorial plasma. J. Geophys. Res. 2005, 110, A02303. [Google Scholar] [CrossRef]
- Muella, M.T.A.H.; Kherani, E.A.; de Paula, E.R.; Cerruti, A.P.; Kinter, P.M.; Kantor, I.J.; Mitchell, C.N.; Batista, I.S.; Abdu, M.A. Scintillation-producing Fresnel-scale irregularities associate with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly. J. Geophys. Res. 2010, 115, A03301. [Google Scholar] [CrossRef]
- Jiao, Y.; Morton, Y.T. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci. 2015, 50, 886–903. [Google Scholar] [CrossRef]
- Cohen, R.; Bowles, K.L.; Calvert, W. On the nature of equatorial slant sporadic E. J. Geophys. Res. 1962, 67, 965–972. [Google Scholar] [CrossRef]
- Matyugov, S.S.; Yakovlev, O.I.; Pavelyev, A.G.; Pavelyev, A.A.; Anufriev, V.A. Sporadic Structures in the Equatorial Ionosphere from the GPS-Formosat-3 Radio-Occultation Experiments. Radiophys. Quantum Electron. 2015, 58, 233–244. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yoshida, A.; Sato, M.; Adachi, T.; Kondo, S.; Hsu, R.R.; Su, H.T.; Chen, A.B.; Mende, S.B.; Frey, H.U.; et al. Absolute optical energy of sprites its relationship to charge moment of parentlightning discharge based on measurement by, IISUAL/AP. J. Geophys. Res. 2010, 115, A00E55. [Google Scholar] [CrossRef]
- Yu, B.; Xue, X.; Kuo, C.; Lu, G.; Scott, C.J.; Wu, J.; Ma, J.; Dou, X.; Gao, X.; Ning, B.; et al. The intensification of metallic layered phenomena above thunderstorms through the modulation of atmospheric tides. Sci. Rep. 2019, 9, 17907. [Google Scholar] [CrossRef]
Station Code | City/Location Name | Latitude | Longitude | Magnetic Latitude |
---|---|---|---|---|
SHAO | Shanghai Observatory | 31.100 | 121.200 | 24.68356 |
WUH2 | Wuhan City | 30.532 | 114.357 | 24.29664 |
BJFS | Beijing (Fangshan) | 39.609 | 115.892 | 34.12889 |
BJNM | Beijing | 40.245 | 116.224 | 34.94217 |
CHAN | Changchun | 43.791 | 125.443 | 38.86885 |
SUWN | Suwon-Shi | 37.276 | 127.054 | 31.27664 |
DAEJ | Deajeon | 36.399 | 127.374 | 30.60097 |
Date | Energy (KJ) | Time | Daily Average (J) |
---|---|---|---|
21 June 2016 | 280 | 9 UTC | 2643.4 |
31 July 2013 | 863 | 13 UTC | 6368.6 |
4 June 2012 | 9000 | 7 UTC | 2585.5 |
8 August 2017 | 68.7 | 13 UTC | 900.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunsua, B.O.; Qie, X.; Srivastava, A.; Abe, O.E.; Owolabi, C.; Jiang, R.; Yang, J. Ionospheric Perturbations Due to Large Thunderstorms and the Resulting Mechanical and Acoustic Signatures. Remote Sens. 2023, 15, 2572. https://doi.org/10.3390/rs15102572
Ogunsua BO, Qie X, Srivastava A, Abe OE, Owolabi C, Jiang R, Yang J. Ionospheric Perturbations Due to Large Thunderstorms and the Resulting Mechanical and Acoustic Signatures. Remote Sensing. 2023; 15(10):2572. https://doi.org/10.3390/rs15102572
Chicago/Turabian StyleOgunsua, Babalola O., Xiushu Qie, Abhay Srivastava, Oladipo Emmanuel Abe, Charles Owolabi, Rubin Jiang, and Jing Yang. 2023. "Ionospheric Perturbations Due to Large Thunderstorms and the Resulting Mechanical and Acoustic Signatures" Remote Sensing 15, no. 10: 2572. https://doi.org/10.3390/rs15102572
APA StyleOgunsua, B. O., Qie, X., Srivastava, A., Abe, O. E., Owolabi, C., Jiang, R., & Yang, J. (2023). Ionospheric Perturbations Due to Large Thunderstorms and the Resulting Mechanical and Acoustic Signatures. Remote Sensing, 15(10), 2572. https://doi.org/10.3390/rs15102572