Landsat Satellite Image-Derived Area Evolution and the Driving Factors Affecting Hulun Lake from 1986 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Methods
2.3.1. Water Area Extraction
2.3.2. Precision Validation
2.3.3. Pixel Dichotomy Model and Vegetation Coverage Classification
2.3.4. Mann–Kendall Test
2.3.5. Pearson Correlation Coefficient and Principal Component Analysis
- (1)
- Pearson Correlation Coefficient
- (2)
- Principal Component Analysis (PCA)
3. Results
3.1. Hulun Lake Area Extraction Accuracy Verification
3.2. Evolution Characteristics of the Water Area of Hulun Lake
3.3. Correlation Analysis between Water Area and Natural Factors of Hulun Lake
3.3.1. Meteorological Factors
3.3.2. Surface Runoff
3.3.3. Fractional Vegetation Cover
3.4. Correlation Analysis between Water Area and Anthropogenic Factors of Hulun Lake
3.5. Analysis of the Factors Causing Hulun Lake Area to Shrink Rapidly
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Fang, H.; Bao, A.; Yang, L. Spatio-temporal Analysis of Recent Changes of Lake Area and Lake Water Level at High Mountains in Central Asia. Resour. Sci. 2011, 33, 1839–1846. [Google Scholar]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Li, C.; Song, W. The Review of the Relationship with Climate Change and Hulun Lake Wetland. Chin. Agric. Sci. Bull. 2012, 28, 300–305. [Google Scholar]
- Li, Q.; Lu, L.; Wang, C.; Li, Y.; Sui, Y.; Guo, H. MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid Xinjiang, China, 2000–2014. Water 2015, 7, 5731–5751. [Google Scholar] [CrossRef]
- Ma, R.; Duan, H.; Hu, C.; Feng, X.; Li, A.; Ju, W.; Jiang, J.; Yang, G. A half-century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37, L24106. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Jin, T.; Li, C.; Ofterdinger, U.; Zhang, S.; Ding, A.; Li, J. Is China’s fifth-largest inland lake to dry-up? Incorporated hydrological and satellite-based methods for forecasting Hulun lake water levels. Adv. Water Resour. 2016, 94, 185–199. [Google Scholar] [CrossRef]
- Cao, B.; Xu, D.; Dou, H.; Pang, B.; Ao, W.; Gu, Y.; Shan, N.; Wang, W.; Liu, B.; Zou, C. Index system of ecological security of inland lakes in cold arid region: A case study of Hulun Lake, China. Acta Ecol. Sin. 2021, 41, 2996–3006. [Google Scholar]
- Cao, B.; Shan, N.; Gu, Y.; Ao, W.; Pang, B.; Dou, H.; Wang, W.; Zou, C. Evaluation of Ecological Security in Hulun Lake Watershed and Its Spatio-Temporal Distribution Trend. Res. Environ. Sci. 2021, 34, 801–811. [Google Scholar]
- Chu, Y.; Li, J.; Jiang, W.; Zhang, Y. Monitoring of Water Level Variations of Hulun Lake with Jason-1 Altimetric Data. J. Geod. Geodyn. 2005, 25, 11–16. [Google Scholar]
- Zhao, H.; Wu, L.; Hao, W. Influences of climate change to ecological and environmental evolvement in the Hulun Lake wetland and its surrounding areas. Acta Ecol. Sin. 2008, 28, 1064–1071. [Google Scholar]
- Yang, H.; Jiang, M.; Yinglan, A.; Wang, G.; Wu, B. Changes in Land Use and Landscape Pattern in Hulun Lake Nature Reserve. J. Beijing Norm. Univ. Nat. Sci. 2013, 49, 318–325. [Google Scholar]
- Pang, Z.; Wu, Y.; Lu, J.; Qu, W. Dynamic Change Remote Sensing Monitoring and Driving Forces Analysis of Hulun Lake Wetland. In Proceedings of the 35th World Congress of the International-Association-for-Hydro-Environment-Engineering-and-Research (IAHR), Chengdu, China, 8–13 September 2013. [Google Scholar]
- Chen, X.; Chuai, X.; Yang, L. Status Quo, Historical Evolution and Causes of Eutrophication in Lakes in Typical Lake Regions of China. J. Ecol. Rural Environ. 2014, 30, 438–443. [Google Scholar]
- Fan, C.; Song, C.; Liu, K.; Ke, L.; Xue, B.; Chen, T.; Fu, C.; Cheng, J. Century-Scale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach. Water Resour. Res. 2021, 57, e2020WR028831. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Shi, X.; Sun, B.; Wu, L.; Wang, W. Driving Mechanisms of the Evolution and Ecological Water Demand of Hulun Lake in Inner Mongolia. Water 2022, 14, 3415. [Google Scholar] [CrossRef]
- Sun, B.; Yang, Z.; Zhao, S.; Shi, X.; Liu, Y.; Ji, G.; Huotari, J. Water Balance Analysis of Hulun Lake, a Semi-Arid UNESCO Wetland, Using Multi-Source Data. Remote Sens. 2023, 15, 2028. [Google Scholar] [CrossRef]
- Xu, Y.; Gun, Z.; Zhao, J.; Cheng, X. Variations in lake water storage over Inner Mongolia during recent three decades based on multi-mission satellites. J. Hydrol. 2022, 609, 127719. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Wu, J.; Tan, W.; Yu, L. Comparative study of different water indexes based on TM/ETM+ imagery. Sci. Surv. Mapp. 2013, 38, 193–195. [Google Scholar]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Dong, Y.; Yang, Q. Study on the Dynamic Change of Water Area in the Danjiangkou Reservoir. South--North Water Transf. Water Sci. Technol. 2009, 7, 255–257. [Google Scholar]
- Xu, J.; Chen, X.; Chen, W. Study of Water Body Information Extracting Methods Based on Spectrum Characteristics. Geo-Inf. Sci. 2009, 11, 98–103. [Google Scholar] [CrossRef]
- Wang, L.; Xie, H.; Wen, G.; Yang, Y. A study on water information extraction method of cyanobacteria lake based on Landsat8. Remote Sens. Land Resour. 2020, 32, 130–136. [Google Scholar]
- Zhao, S.; Ji, W.; Gao, P.; Han, W.; Xu, D. Study on Dynamic Change of Hulun Lake Water Area and the Relationship with the Climatic Factors during 1986~2016. J. China Agric. Resour. Reg. Plan. 2018, 39, 53–58. [Google Scholar]
- Chang, Y.; Zhang, J.; Han, W.; Ding, X.; Zhang, Y. Monitoring Inter-monthly Change of Namtso Lake Surface Using Sentinel-1AData. Remote Sens. Inf. 2022, 37, 45–52. [Google Scholar]
- Wang, W.; Samat, A.; Ma, L.; Ge, Y.; Abuduwaili, J. Spatio-temporal variations and trend analysis of lake area in Xinjiang in 1986–2019. Acta Ecol. Sin. 2022, 42, 1300–1314. [Google Scholar]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef]
- Li, M.; Wu, B.; Yan, C.; Zhou, W. Estimation of Vegetation Fraction in the Upper Basin of Miyun Reservoir by Remote Sensing. Resour. Sci. 2004, 26, 153–159. [Google Scholar]
- Gutman, G.G. Vegetation Indexes from Avhrr—An Update and Future-Prospects. Remote Sens. Environ. 1991, 35, 121–136. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Wang, J.; Li, Y. Study on runoff trends of the six larger basins in China over the past 50 years. Adv. Water Sci. 2007, 18, 230–234. [Google Scholar]
- Liu, X.; Xue, Y.; Ji, Y.; Xu, B.; Ren, Y. An assessment of water quality in the Yellow River estuary and its adjacent waters based on principal component analysis. China Environ. Sci. 2015, 35, 3187–3192. [Google Scholar]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Xiang, J.; Pan, Y.; Huang, Z.; Wu, Y. Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data. J. Vis. Commun. Image Represent. 2019, 58, 565–575. [Google Scholar] [CrossRef]
- Ren, Z.; Li, M.; Zhang, W. Conversion coefficient of small evaporation pan into E-601B pan in China. J. Appl. Meteorol. Sci. 2002, 13, 508–512. [Google Scholar]
- Peng, Y.; Li, Z.; Yao, X.; Mou, J.; Han, W.; Wang, P. Area Change and Cause Analysis of Bosten Lake based on Multi-source Remote Sensing Data and GEE Platform. J. Geo-Inf. Sci. 2021, 23, 1131–1153. [Google Scholar]
- Jin, Y.; Xu, M.; Gao, S.; Wan, H. Analysis on the Dynamic Changes and Driving Forces of Surface Water in the Three-River Headwater Region from 2001 to 2018. Remote Sens. Technol. Appl. 2021, 36, 1147–1154. [Google Scholar]
- Wu, S.; Sun, Y. Analysis of Surface and Groundwater Changes of the Hulun Lake based on Multi-source Data. Remote Sens. Technol. Appl. 2021, 36, 155–164. [Google Scholar]
- Wang, P.; Guo, Y.; Zhou, K.; Zheng, S.; Jiang, X.; Wang, S. Variation of Lake Area of Hulun Lake during 1961–2018 and Its Response to Climate Change. Res. Environ. Sci. 2021, 34, 792–800. [Google Scholar]
- Yang, L.; Tian, L.; Bai, G.; Pei, S.; Zhang, D. Ecological risk assessments and source analysis of heavy metals in the soil of Xin Barag Youqi, Inner Mongolia. Geol. China 2022, 49, 1970–1983. [Google Scholar]
- Pei, S.; Yuan, J.; Huang, M. Soil Geochemical anomly Characteristics of Xinbaerhuzuoqi, Inner Mongolia and the Ore prospecting direction. Contrib. Geol. Min. Resour. Res. 2018, 33, 449–457. [Google Scholar]
- Gu, Y.; Pang, B.; Qiao, X.; Xu, D.; Li, W.; Yan, Y.; Dou, H.; Ao, W.; Wang, W.; Zou, C.; et al. Vegetation dynamics in response to climate change and human activities in the Hulun Lake basin from 1981 to 2019. Ecol. Indic. 2022, 136, 108700. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, L. The Research on Sustainable Development and the Industrial Transformation of Resource-based Region. J. Arid Land Resour. Environ. 2008, 22, 47–50. [Google Scholar]
- Lei, S.; Bian, Z. Research progress on the environment impacts from underground coal mining in arid western area of China. Acta Ecol. Sin. 2014, 34, 2837–2843. [Google Scholar]
- Zhao, C.; Wang, Q.; Wang, H.; Yang, J.; Liu, J.; Zhang, Y. Analysis of influence of open-pit coal mining on groundwater system and curtain wall protection in grassland area of Northeastern China. J. China Coal Soc. 2019, 44, 3685–3692. [Google Scholar]
- Huang, Y.; Yao, B.; Li, Y.; Zhang, H.; Wang, S. Deciphering Hulun lake level dynamics and periodical response to climate change during 1961–2020. J. Hydrol. Reg. Stud. 2023, 46, 101352. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Ma, F.; Chen, J. Analysis of water balance of Hulun Lake based on digital remote sensing images. Water Resour. Prot. 2020, 36, 73–79. [Google Scholar]
- Pei, H.; Liu, M.; Jia, Y.; Zhang, H.; Li, Y.; Xiao, Y. The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020. Ecol. Indic. 2021, 129, 108004. [Google Scholar] [CrossRef]
Grade | Grading Standard |
---|---|
High Coverage | FVC > 0.7 |
Medium-High Coverage | 0.5 < FVC ≤ 0.7 |
Medium Coverage | 0.3 < FVC ≤ 0.5 |
Medium-Low Coverage | 0.1 < FVC ≤ 0.3 |
Low Coverage | FVC ≤ 0.1 |
(a) MNDWI | |||||
---|---|---|---|---|---|
Google Reference Data | Total | UA | |||
Water | Non-Water | ||||
Water | 189 | 8 | 197 | 95.94% | |
Non-Water | 11 | 192 | 203 | 94.58% | |
Total | 200 | 200 | OA | 95.25% | |
PA | 94.50% | 96.00% | Kc | 0.905 | |
(b) JRC | |||||
Google Reference Data | Total | UA | |||
Water | Non-Water | ||||
Water | 186 | 67 | 253 | 73.52% | |
Non-Water | 14 | 133 | 147 | 90.48% | |
Total | 200 | 200 | OA | 79.75% | |
PA | 93.00% | 66.50% | Kc | 0.595 |
Lake Area | Annual Runoff of Wuerxun River | Annual Runoff of Kerulen River | |
---|---|---|---|
Lake Area | 1 | ||
Annual Runoff of Wuerxun River | 0.35 | 1 | |
Annual Runoff of Kerulen River | 0.73 * | 0.38 | 1 |
KMO Test and Bartlett Spherical Test | ||
---|---|---|
KMO | 0.667 | |
Bartlett Spherical Test | χ2 | 204.847 |
df | 36 | |
Sig | 0.000 ** |
Component | Initial Eigenvalue | Extract the Load Sum of Squares | ||||
---|---|---|---|---|---|---|
Total % | Variance % | Accumulation % | Total % | Variance % | Accumulation % | |
1 | 4.31 | 47.85 | 47.85 | 4.31 | 47.85 | 47.85 |
2 | 2.39 | 26.54 | 74.39 | 2.39 | 26.54 | 74.39 |
3 | 0.98 | 10.94 | 85.33 | |||
4 | 0.86 | 9.51 | 94.84 | |||
5 | 0.26 | 2.86 | 97.70 | |||
6 | 0.12 | 1.36 | 99.06 | |||
7 | 0.07 | 0.74 | 99.80 | |||
8 | 0.02 | 0.20 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; A, Y.; Wang, Y.; Xue, B. Landsat Satellite Image-Derived Area Evolution and the Driving Factors Affecting Hulun Lake from 1986 to 2020. Remote Sens. 2023, 15, 2682. https://doi.org/10.3390/rs15102682
Song W, A Y, Wang Y, Xue B. Landsat Satellite Image-Derived Area Evolution and the Driving Factors Affecting Hulun Lake from 1986 to 2020. Remote Sensing. 2023; 15(10):2682. https://doi.org/10.3390/rs15102682
Chicago/Turabian StyleSong, Wei, Yinglan A, Yuntao Wang, and Baolin Xue. 2023. "Landsat Satellite Image-Derived Area Evolution and the Driving Factors Affecting Hulun Lake from 1986 to 2020" Remote Sensing 15, no. 10: 2682. https://doi.org/10.3390/rs15102682