The Formation of an Ice-Contact Proglacial Lake and Its Impact on Glacier Change: A Case Study of the Tanymas Lake and Fedchenko Glacier
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Landsat Images
3.1.2. Google Earth Imagery and KH-9 Image
3.1.3. SRTM DEM
3.1.4. Glacier Surface Elevation and Velocity Change Datasets
3.1.5. Meteorological Data
3.2. Methods
3.2.1. Tanymas Lake Outlines Delineation
3.2.2. Extraction Glacier Surface Velocity
4. Results
4.1. Evolution of the Tanymas Lake
Formation and Expansion
- Before August 2005: Tanymas Lake was in an embryonic stage. In the first complete investigation of the Fedchenko Glacier in 1928, explorers discovered the existence of the Tanymas terminus of the upper Fedchenko Glacier and demonstrated its drainage [38]. As the Tanymas-5 Glacier blocked drainage, meltwater from the Fedchenko and other glaciers gradually accumulated to form some small ponds, which were the prototype of Tanymas Lake. Historical topographic maps (1928 and 1958), the Soviet Union Glacier Inventory, KH-9 images, and Landsat images indicate that these ponds slowly expanded and merged before 2005, eventually forming a group of small glacial lakes (Figure 2a–c). At the same time, the Tanymas terminus of the Fedchenko Glacier gradually came into contact with the water and began to transform into a lake terminus.
- August 2005 to September 2018: Tanymas Lake was in a formation and expansion stage. In late August 2005 (Figure 2d,e), an ice body with an area of ~0.05 km2 broke away from the middle Tanymas terminus of the Fedchenko Glacier, resulting in the complete integration of the original small glacial lakes and the formal formation of the unified Tanymas Lake. Meanwhile, the Tanymas terminus became a complete lake terminus. Tanymas Lake had an area of 1.03 km2 in August 2005, but it still expanded as the surrounding glacier’s recession and ice calved. As shown in the Google Earth image on 12 October 2007, a large number of giant ice floes broke away from the glacier terminus and floated on the western lake, with the largest ice floe covering an area of over 0.03 km2 (Figure 2f). By the end of August 2018 (Figure 2g,h), Tanymas Lake reached its largest size since 2005, with an area of 1.16 km2.
- After September 2018: Tanymas Lake was in a new expansion stage. The bedrock shorelines on the northern lake are not affected by the glacier dynamics directly, so they can effectively indicate the water level of Tanymas Lake. As shown in Figure 2h, the shorelines on the northern lake retreated, and the rock on the eastern lake was fully exposed from August 18 to September 10 in 2018, proving that the water level had depressed, and thus the lake area shrunk to 1.09 km2. Since then, the lake water level was basically stable, but the lake area rebounded due to the recession of the surrounding glaciers (Figure 2i) and had rebounded to 1.11 km2 by September 2022.
4.2. Interactions of Glacier and Glacial Lake
4.2.1. Glacial Impact on Tanymas Lake
4.2.2. Impact of Tanymas Lake on Glaciers
5. Discussions
5.1. Mechanism of the Tanymas Lake Formation and Evolution
5.2. Lake Change and GLOF Risk
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.Q.; Bolch, T.; Yao, T.D.; Rounce, D.R.; Chen, W.F.; Veh, G.; King, O.; Allen, S.K.; Wang, M.M.; Wang, W.C. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya. Nat. Geosci. 2023, 16, 333–338. [Google Scholar] [CrossRef]
- Sutherland, J.L.; Carrivick, J.L.; Gandy, N.; Shulmeister, J.; Quincey, D.J.; Cornford, S.L. Proglacial lakes control glacier geometry and behavior during recession. Geophys. Res. Lett. 2020, 47, e2020GL088865. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. Proglacial lakes: Character, behaviour and geological importance. Quaternary. Sci. Rev. 2013, 78, 34–52. [Google Scholar] [CrossRef]
- Liu, Q.; Mayer, C.; Wang, X.; Nie, Y.; Wu, K.P.; Wei, J.F.; Liu, S.Y. Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth Planet Sc. Lett. 2020, 546, 116450. [Google Scholar] [CrossRef]
- King, O.; Bhattacharya, A.; Bhambri, R.; Bolch, T. Glacial lakes exacerbate Himalayan glacier mass loss. Sci. Rep. 2019, 9, 18145. [Google Scholar] [CrossRef] [PubMed]
- King, O.; Dehecp, A.; Quincey, D.; Carrivick, J. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob. Planet. Chang. 2018, 167, 46–60. [Google Scholar] [CrossRef]
- Brun, F.; Wagnon, P.; Berthier, E.; Jomelli, V.; Maharjan, S.B.; Shrestha, F.; <monospace> </monospace>Kraaijenbrink, P.D.A. Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. J. Geophys. Res.-Earth Surf. 2019, 124, 1331–1345. [Google Scholar] [CrossRef]
- Song, C.Q.; Sheng, Y.W.; Wang, J.D.; Ke, L.H.; Madson, A.; Nie, Y. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 2017, 280, 30–308. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; and de Jong, S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Bolch, T.; Allen, S.; Linsbauer, A.; Chen, W.F.; Wang, W.C. Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964-2017. J. Glaciol. 2019, 65, 347–365. [Google Scholar] [CrossRef]
- Haritashya, U.; Kargel, J.; Shugar, D.; Leonard, G.; Strattman, K.; Watson, C.; Shean, D.; Harrison, S.; Mandli, K.; Regmi, D. Evolution and controls of large glacial lakes in the Nepal Himalaya. Remote Sens. 2018, 10, 798. [Google Scholar] [CrossRef]
- Sakai, A.; Nishimura, K.; Kadota, T.; Takeuchi, N. Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya. J. Glaciol. 2009, 55, 909–917. [Google Scholar] [CrossRef]
- Watson, C.S.; Kargel, J.S.; Shugar, D.H.; Haritashya, U.K.; Schiassi, E.; Furfaro, R. Mass loss from calving in Himalayan proglacial lakes. Front. Earth Sci. 2020, 7, 00342. [Google Scholar] [CrossRef]
- Compagno, L.; Huss, M.; Zekollari, H.; Miles, E.S.; Farinotti, D. Future growth and decline of high mountain Asia’s ice-dammed lakes and associated risk. Commun. Earth Environ. 2022, 3, 191. [Google Scholar] [CrossRef]
- Wei, J.F.; Liu, S.Y.; Wang, X.; Zhang, Y.; Jiang, Z.L.; Wu, K.P.; Zhang, Z.; Zhang, T. Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018. J. Glaciol. 2021, 67, 473–484. [Google Scholar] [CrossRef]
- Veh, G.; Lützow, N.; Tamm, J.; Luna, L.V.; Hugonnet, R.; Vogel, K.; Geertsema, M.; Clague, J.J.; Korup, O. Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature 2023, 614, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.L.; Zeng, J.; Zhang, Y.L.; Huai, B.J.; Wang, Y.T. Recent Kyagar glacier lake outburst flood frequency in Chinese Karakoram unprecedented over the last two centuries. Nat. Hazards 2019, 95, 877–881. [Google Scholar] [CrossRef]
- ShuangGuan, D.H.; Ding, Y.J.; Liu, S.Y.; Xie, Z.C.; Pieczonka, T.; Xu, J.L.; Moldobekov, B. Quick release of internal water storage in a glacier leads to underestimation of the hazard potential of glacial lake outburst floods from Lake Merzbacher in Central Tian Shan Mountains. Geophys. Res. Lett. 2017, 44, 9786–9795. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Wendt, A.; Floricioiu, D.; Volksen, C. Elevation change of Fedchenko Glacier, Pamir Mountains, from GNSS field measurements and TanDEM-X elevation models, with a focus on the upper glacier. J. Glaciol. 2018, 64, 637–648. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, N.L.; Chen, A.A.; Liang, Q.; Yang, D.Q. Slight change of glaciers in the Pamir over the period 2000-2017. Arct. Antarct. Alp. Res. 2022, 54, 13–24. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Alzen, V.; Floricioiu, D.; Surazakov, A. The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J. Glaciol. 2014, 60, 233–244. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.Y.; Yang, C.D.; Liu, Q.H.; Wei, J.F.; Zhang, Y.; Liu, S.Y.; Zhang, Y.L.; Jiang, Z.L.; Tang, Z.G. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.M.; Guo, H.D.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Watson, C.S. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Li, Z.W.; Li, J.; Zhao, R.; Ding, X.L. Geodetic glacier mass balance (1975–1999) in the central Pamir using the SRTM DEM and KH-9 imagery. J. Glaciol. 2019, 65, 309–320. [Google Scholar] [CrossRef]
- Goerlich, F.; Bolch, T.; Paul, F. More dynamic than expected: An updated survey of surging glacier in the Pamir. Earth Syst. Sci. Data 2020, 12, 3161–3176. [Google Scholar] [CrossRef]
- Molg, N.; Bolch, T.; Rastner, P.; Strozzi, T.; Paul, F. A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: Distribution of debris cover and mapping challenges. Earth Syst. Sci. Data 2018, 10, 1807–1827. [Google Scholar] [CrossRef]
- USGS. Shuttle Radar Topography Mission 1 Arc-Second Global; USGS: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouve, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; Broeke, M.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef]
- Lei, Y.; Gardner, A.S.; Agram, P. Autonomous repeat image feature tracking (autoRIFT) and its application for tracking ice displacement. Remote Sens. 2021, 13, 749. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Bohleber, P.; Aizen, V. High altitude accumulation and preserved climate information in the western Pamir, observations from the Fedchenko Glacier accumulation basin. J. Glaciol. 2020, 66, 219–230. [Google Scholar] [CrossRef]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; et al. The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere 2015, 8, 849–864. [Google Scholar] [CrossRef]
- Bai, C.B.; Wang, F.T.; Wang, L.; Xun, C.H.; Yue, X.Y.; Yang, S.J.; Wang, P.Y.; Bi, Y.Q.; Wei, H.N. Dynamic monitoring of debris-covered glacier surface velocity and ice thickness of Mt.Tomur, Tian Shan, China. Remote Sens. 2023, 15, 150. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef]
- Silk Road Adventures. History of Tanymas Valley. 2021. Available online: https://silkadv.com/en/content/history-tanymas-valley (accessed on 23 April 2023).
- Markus, H. The Pamir Archive: A world of information. In Pamirs at the Crossroads-Changing Challenges and Perspectives (Berlin Geographical Papers 45); Freie Universität Berlin: Berlin, Germany, 2016. [Google Scholar]
- Miles, E.S.; Watson, C.S.; Brun, F.; Berthier, E.; Esteves, M.; Quincey, D.J.; Miles, K.E.; Hubbard, B.; Wagnon, P. Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. Cryosphere 2018, 12, 3891–3905. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of High Mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 00363. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Han, L.; Sun, M.P. Definition and classification systems of glacial lake for inventory and hazards study. Acta Geogr. Sin. 2017, 72, 1173–1183. [Google Scholar] [CrossRef]
- Yan, S.Y.; Liu, G.; Wang, Y.J.; Ruan, Z.X. Accurate determination of glacier surface velocity fields with a DEM-Assisted Pixel-Tracking Technique from SAR imagery. Remote Sens. 2015, 7, 10898–10916. [Google Scholar] [CrossRef]
- Aizen, V.B.; Mayewski, P.A.; Aizen, E.M.; Joswiak, D.R.; Surazakov, A.B.; Kaspari, S.; Grigholm, B.; Keachler, M.; Handley, M.; Finaev, A. Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. J. Glaciol. 2009, 190, 275–291. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Sun, M.P.; Wei, J.F.; Guo, W.Q. Volume calculation and analysis of the changes in moraine-dammed lakes in the north Himalaya: A case study of Longbasaba lake. J. Glaciol. 2012, 58, 753–760. [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Osipova, G.B.; Tsvetkov, D.G. Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann. Glaciol. 2008, 48, 125–134. [Google Scholar] [CrossRef]
- Guillet, G.; King, O.; Lv, M.L.; Ghuffar, S.; Benn, D.; Quincey, D.; Bolch, T. A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach. Cryosphere 2022, 16, 603–623. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
Image ID | Date of Acquisition | Resolution/m |
---|---|---|
LT51510331994244ISP00 | 1 September 1994 | 30 |
LT51510331997252ISP01 | 9 September 1997 | 30 |
LE71510332000237SGS00 | 24 August 2000 | 15 |
LE71510332005218PFS00 | 6 August 2005 | 15 |
LE71510332005234PFS00 | 22 August 2005 | 15 |
LE71510332006237PFS00 | 25 August 2006 | 15 |
LE71510332006253PFS01 | 10 September 2006 | 15 |
LE71510332007256PFS01 | 13 September 2007 | 15 |
LT51520332008226KHC00 | 13 August 2008 | 30 |
LT51520332011250KHC00 | 7 September 2011 | 30 |
LE71510332012238PFS00 | 25 August 2012 | 15 |
LC81520332013255LGN01 | 12 September 2013 | 15 |
LC81520332015229LGN01 | 17 August 2015 | 15 |
LC81520332016264LGN00 | 20 September 2016 | 15 |
LC81520332017250LGN00 | 7 September 2017 | 15 |
LC81510332018230LGN00 | 18 August 2018 | 15 |
LC81520332018253LGN00 | 10 September 2018 | 15 |
LC81510332019265LGN00 | 22 September 2019 | 15 |
LC81520332020259LGN00 | 15 September 2020 | 15 |
LC81520332021261LGN00 | 18 September 2021 | 15 |
LC81510332022257LGN00 | 14 September 2022 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, N.; Chang, J.; Zhang, Q. The Formation of an Ice-Contact Proglacial Lake and Its Impact on Glacier Change: A Case Study of the Tanymas Lake and Fedchenko Glacier. Remote Sens. 2023, 15, 2745. https://doi.org/10.3390/rs15112745
Li Z, Wang N, Chang J, Zhang Q. The Formation of an Ice-Contact Proglacial Lake and Its Impact on Glacier Change: A Case Study of the Tanymas Lake and Fedchenko Glacier. Remote Sensing. 2023; 15(11):2745. https://doi.org/10.3390/rs15112745
Chicago/Turabian StyleLi, Zhijie, Ninglian Wang, Jiawen Chang, and Quan Zhang. 2023. "The Formation of an Ice-Contact Proglacial Lake and Its Impact on Glacier Change: A Case Study of the Tanymas Lake and Fedchenko Glacier" Remote Sensing 15, no. 11: 2745. https://doi.org/10.3390/rs15112745
APA StyleLi, Z., Wang, N., Chang, J., & Zhang, Q. (2023). The Formation of an Ice-Contact Proglacial Lake and Its Impact on Glacier Change: A Case Study of the Tanymas Lake and Fedchenko Glacier. Remote Sensing, 15(11), 2745. https://doi.org/10.3390/rs15112745