Oceanic Responses to the Winter Storm Outbreak of February 2021 in the Gulf of Mexico from In Situ and Satellite Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.1.1. Surface Buoy Observations
2.1.2. Daily Optimum Interpolation Sea Surface Temperature (DOISST)
2.1.3. Wind and Surface Heat Flux Data
2.1.4. NOAA Daily Level-4 Science Quality Multi-Sensor Chlorophyll Gap-Filled Analysis
2.1.5. Seven-Day Global Multi-Mission Optimally Interpolated (OI) Sea Surface Salinity (OISSS) Dataset
2.1.6. HYbrid Coordinate Ocean Model (HYCOM)
2.2. Parameter Estimates
2.2.1. MLD
2.2.2. Ekman Suction
2.2.3. Latent Heat Flux (LHF) and Sensible Heat Flux (SHF)
2.3. WSO21 Periods Definition
3. Results
3.1. Oceanic Responses in the Northwestern Region from Coastal Buoys
3.2. Response to WSO21 in the Western GoM
3.2.1. Cooling Caused by WSO21
3.2.2. Surface Turbulent Heat Fluxes Response
3.2.3. Ekman Suction
3.2.4. Mixed Layer Depth
3.2.5. Changes in Ocean Color and Sea Surface Salinity (SSS)
4. Discussion
4.1. Cooling in the Western GoM
4.2. Coastal Cooling during WSO21
4.3. Global Warming Impact on WSO21
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, J.; Agel, L.; Barlow, M.; Garfinkel, C.I.; White, I. Linking Arctic Variability and Change with Extreme Winter Weather in the United States. Science 2021, 373, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.W.; Darmaraki, S.; Benthuysen, J.A.; Filbee-Dexter, K.; Oliver, E.C.J. Marine Cold-Spells. Prog. Oceanogr. 2021, 198, 102684. [Google Scholar] [CrossRef]
- Doss-Gollin, J.; Farnham, D.J.; Lall, U.; Modi, V. How Unprecedented Was the February 2021 Texas Cold Snap? Environ. Res. Lett. 2021, 16, 064056. [Google Scholar] [CrossRef]
- Hellerstedt, J. February 2021 Winter Storm-Related Deaths—Texas; Texas Health and Human Services: Austin, TX, USA, 2021. Available online: https://www.dshs.texas.gov/sites/default/files/news/updates/SMOC_FebWinterStorm_MortalitySurvReport_12-30-21.pdf (accessed on 15 July 2022).
- Watson, K.P.; Cross, R.; Jones, M.P.; Buttorff, G.; Granato, J.; Pinto, P.; Sipole, S.L.; Vallejo, A. The Winter Storm of 2021. 2021. Available online: https://uh.edu/hobby/winter2021/storm.pdf (accessed on 15 July 2022).
- Yang, L.; Liu, M. 2021 February Texas Ice Storm Induced Spring GPP Reduction Compensated by the Higher Precipitation. Earths Future 2023, 11, e2022EF003030. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W. Chapter 2. The Changing Climate of Texas. In The Impact of Global Warming on Texas; University of Texas Press: Austin, TX, USA, 2011; pp. 39–68. [Google Scholar]
- Gunter, G. Death of Fishes Due to Cold on the Texas Coast, January, 1940. Ecology 1941, 22, 203–208. [Google Scholar] [CrossRef]
- Gunter, G.; Hildebrand, H.H. Destruction of Fishes and Other Organisms on the South Texas Coast by the Cold Wave of January 28–February 3, 1951. Ecology 1951, 32, 731–736. [Google Scholar] [CrossRef]
- Moore, R.H. Observations on Fishes Killed by Cold at Port Aransas, Texas, 11–12 January 1973. Southwest Nat. 1976, 20, 461–466. [Google Scholar] [CrossRef]
- Texas Parks and Wildlife. 2021 Winter Storm Coastal Fisheries Impacts; Texas Parks and Wildlife Department: Austin, TX, USA, 2021.
- Mollenhauer, R.; Lamont, M.M.; Foley, A. Long-term Apparent Survival of a Cold-stunned Subpopulation of Juvenile Green Turtles. Ecosphere 2022, 13, e4221. [Google Scholar] [CrossRef]
- Burnett, J. Texas ‘Cold-Stun’ of 2021 Was Largest Sea Turtle Rescue in History, Scientists Say. Natl. Public Radio 2021. Available online: https://tinyurl.com/Texas-Cold-Stun-Of-2021 (accessed on 22 June 2022).
- Proffitt, E.; Devlin, D. Effects of Winter Storm Uri (2021) on Coastal Wetlands: Changes in Marsh-Mangrove Dominance, Soil Properties, Elevation, and Shoreline Retreat at Texas Sentinel Sites. In Proceedings of the Gulf of Mexico Conference, Baton Rouge, LA, USA, 25–28 April 2022. [Google Scholar]
- Müller-Karger, F.E.; Walsh, J.J.; Evans, R.H.; Meyers, M.B. On the Seasonal Phytoplankton Concentration and Sea Surface Temperature Cycles of the Gulf of Mexico as Determined by Satellites. J. Geophys. Res. 1991, 96, 12645. [Google Scholar] [CrossRef] [Green Version]
- González, N.M.; Müller-Karger, F.E.; Estrada, S.C.; Pérez de los Reyes, R.; del Río, I.V.; Pérez, P.C.; Arenal, I.M. Near-Surface Phytoplankton Distribution in the Western Intra-Americas Sea: The Influence of El Niño and Weather Events. J. Geophys. Res. 2000, 105, 14029–14043. [Google Scholar] [CrossRef]
- Villanueva, E.; Mendoza, V.; Adem, J. Sea Surface Temperature and Mixed Layer Depth Changes Due to Cold-Air Outbreak in the Gulf of Mexico. Atmósfera 2010, 23, 325–346. [Google Scholar]
- Li, G.; Wang, Z.; Wang, B. Multidecade Trends of Sea Surface Temperature, Chlorophyll-a Concentration, and Ocean Eddies in the Gulf of Mexico. Remote Sens. 2022, 14, 3754. [Google Scholar] [CrossRef]
- Spies, R.B.; Senner, S.; Robbins, C.S. An Overview of the Northern Gulf of Mexico Ecosystem. Gulf Mex. Sci. 2016, 33, 9. [Google Scholar] [CrossRef]
- Seidov, D.; Mishonov, A.V.; Boyer, T.P.; Baranova, O.K.; Nyadjro, E.; Cross, S.L.; Parsons, A.R.; Weathers, K.W. Gulf of Mexico Regional Climatology, Regional Climatology Team, NOAA/NCEI. Dataset. 2020. Available online: https://www.ncei.noaa.gov/products/gulf-mexico-regional-climatology (accessed on 1 September 2022).
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; Paver, C.R.; Reagan, J.R.; Seidov, D.; et al. World Ocean Database 2018. A. V 2018. Available online: https://www.ncei.noaa.gov/access/world-ocean-database-select/dbsearch.html (accessed on 1 September 2022).
- Muller-Karger, F.E.; Smith, J.P.; Werner, S.; Chen, R.; Roffer, M.; Liu, Y.; Muhling, B.; Lindo-Atichati, D.; Lamkin, J.; Cerdeira-Estrada, S.; et al. Natural Variability of Surface Oceanographic Conditions in the Offshore Gulf of Mexico. Prog. Oceanogr. 2015, 134, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Dagg, M.J. Physical and Biological Responses to the Passage of a Winter Storm in the Coastal and Inner Shelf Waters of the Northern Gulf of Mexico. Cont. Shelf Res. 1988, 8, 167–178. [Google Scholar] [CrossRef]
- Pepper, D.A.; Stone, G.W. Hydrodynamic and Sedimentary Responses to Two Contrasting Winter Storms on the Inner Shelf of the Northern Gulf of Mexico. Mar. Geol. 2004, 210, 43–62. [Google Scholar] [CrossRef]
- Wang, Y.; Kajtar, J.B.; Alexander, L.V.; Pilo, G.S.; Holbrook, N.J. Understanding the Changing Nature of Marine Cold-spells. Geophys. Res. Lett. 2022, 49, e2021GL097002. [Google Scholar] [CrossRef]
- Glenn, E.; Comarazamy, D.; González, J.E.; Smith, T. Detection of Recent Regional Sea Surface Temperature Warming in the Caribbean and Surrounding Region. Geophys. Res. Lett. 2015, 42, 6785–6792. [Google Scholar] [CrossRef]
- Wang, Z.; Boyer, T.; Reagan, J.; Hogan, P. Upper-Oceanic Warming in the Gulf of Mexico between 1950 and 2020. J. Clim. 2023, 36, 2721–2734. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved in Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Steele, M.; Huang, B.; Zhang, H.-M. Improved Estimation of Proxy Sea Surface Temperature in the Arctic. J. Atmos. Ocean. Technol. 2020, 37, 341–349. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Freeman, E.; Graham, G.; Smith, T.; Zhang, H.-M. Assessment and Intercomparison of NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 7421–7441. [Google Scholar] [CrossRef]
- Saha, K.; Huai-Min, Z. Hurricane and Typhoon Storm Wind Resolving NOAA NCEI Blended Sea Surface Wind (NBS) Product. Front. Mar. Sci. Ocean. Obs. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Crespo, J.; Posselt, D.; Asharaf, S. CYGNSS Surface Heat Flux Product Development. Remote Sens. 2019, 11, 2294. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, M. Filling the Gaps of Missing Data in the Merged VIIRS SNPP/NOAA-20 Ocean Color Product Using the DINEOF Method. Remote Sens. 2019, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Melnichenko, P.; Hacker, J.; Potemra, T.; Meissner, F. Aquarius/SMAP Sea Surface Salinity Optimum Interpolation Analysis. IPRC Technical Note 2021, No. 7. Available online: https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-docs/smap/open/docs/OISSS_V1/L4OISSS_MultimissionProductGuide_V1.pdf (accessed on 15 February 2022).
- Metzger, E.; Helber, R.; Hogan, P.; Posey, P.; Thoppil, P.; Townsend, T.; Wallcraft, A.; Smedstad, O.; Franklin, D.; Zamudo-Lopez, L.; et al. Global Ocean Forecast System 3.1 Validation Test; Oceanography Division, Naval Research Laboratory: Stennis Space Center, MS, USA, 2017; Available online: https://apps.dtic.mil/sti/citations/AD1034517 (accessed on 1 July 2022).
- Cummings, J.A.; Smedstad, O.M. Variational Data Assimilation for the Global Ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II); Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–343. [Google Scholar]
- Cummings, J.A. Operational Multivariate Ocean Data Assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.A. Empirical Validation and Comparison of the Hybrid Coordinate Ocean Model (HYCOM) between the Gulf of Mexico and the Tongue of the Ocean. Master’s Thesis, Nova Southeastern University, Fort Lauderdale, FL, USA, 2018. Available online: https://nsuworks.nova.edu/occ_stuetd/499 (accessed on 1 July 2022).
- de Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 2004, 109, C12003. [Google Scholar] [CrossRef] [Green Version]
- Bradley, E.F.; Coppin, P.A.; Godfrey, J.S. Measurements of Sensible and Latent Heat Flux in the Western Equatorial Pacific Ocean. J. Geophys. Res. 1991, 96, 3375. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Wang, Z.; Yin, X.; Arguez, A.; Graham, G.; Liu, C.; Smith, T.; Zhang, H. Prolonged Marine Heatwaves in the Arctic: 1982−2020. Geophys. Res. Lett. 2021, 48, e2021GL095590. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Yan, Y.; Li, W. Exploring CYGNSS Mission for Surface Heat Flux Estimates and Analysis over Tropical Oceans. Front. Mar. Sci. 2022, 9, 1001491. [Google Scholar] [CrossRef]
- Boutin, J.; Martin, N.; Reverdin, G.; Yin, X.; Gaillard, F. Sea Surface Freshening Inferred from SMOS and ARGO Salinity: Impact of Rain. Ocean. Sci. 2013, 9, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Boutin, J.; Martin, N.; Reverdin, G.; Morisset, S.; Yin, X.; Centurioni, L.; Reul, N. Sea Surface Salinity under Rain Cells: SMOS Satellite and in Situ Drifters Observations. J. Geophys. Res. Ocean. 2014, 119, 5533–5545. [Google Scholar] [CrossRef] [Green Version]
Buoys | Lat | Lon | Water Depth | Changes | Wind | Air Pressure | Air Temp | Water Temp | Salinity | Density | Wave Height | Current |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Units | ° | ° | m | m/s | mb | °C | °C | PSU | kg/m3 | m | m/s | |
PTAT2 | 27.826 | −97.051 | 1.0 | mean | 2.64 | 7.65 | −14.56 | −6.96 # | ||||
max | 7.18 | 21.28 | −25.62 | −9.43 # | ||||||||
ANPT2 | 27.837 | −97.039 | 10.8 | mean | 3.25 | 7.92 | −14.40 | −8.00 # | ||||
max | 10.89 | 21.69 | −25.72 | −10.17 # | ||||||||
42035 | 29.232 | −94.413 | 16.2 | mean | 3.84 | 5.64 | −11.20 | −2.61 | ||||
max | 10.53 | 17.80 | −22.43 | −4.91 | ||||||||
42048 (D) | 27.939 | −96.843 | 18 | mean | −3.73 | −0.13 | 0.64 | |||||
max | −5.67 | 0.92 | 1.45 | |||||||||
42092 | 27.774 | −96.972 | 18.9 | mean | −4.21 | 0.46 | ||||||
max | −5.67 | 1.29 | ||||||||||
42043 (B) | 28.982 | −94.899 | 19 | mean | −10.44 | −2.65 | 3.06 | 2.88 | 3.25 | |||
max | −21.31 | −4.62 | 4.67 | 4.05 | 50.04 | |||||||
42045 (K) | 26.217 | −96.500 | 62 | mean | 1.73 | 5.82 | −9.04 | 0.49 | 1.18 | 0.76 | 7.64 | |
max | 8.64 | 20.52 | −19.43 | 0.06 | 1.25 | 0.93 | 36.27 | |||||
42019 | 27.910 | −95.345 | 82 | mean | 3.95 | 5.76 | −11.38 | −0.81 | 0.85 | |||
max | 9.49 | 19.09 | −21.45 | −1.72 | 3.07 | |||||||
X | 27.060 | −96.338 | 289 | mean | 3.62 | 6.09 | −11.38 | −1.16 | 0.03 | 0.34 | 0.25 | |
max | 10.30 | 20.22 | −21.79 | −1.54 | 0.08 | 0.48 | 21.57 | |||||
42002 | 26.055 | −93.646 | 3088 | mean | 3.28 | 2.92 | −5.34 | −0.29 | 1.07 | |||
max | 11.55 | 15.80 | −11.38 | −0.92 | 3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Saha, K.; Nyadjro, E.S.; Zhang, Y.; Huang, B.; Reagan, J. Oceanic Responses to the Winter Storm Outbreak of February 2021 in the Gulf of Mexico from In Situ and Satellite Observations. Remote Sens. 2023, 15, 2967. https://doi.org/10.3390/rs15122967
Wang Z, Saha K, Nyadjro ES, Zhang Y, Huang B, Reagan J. Oceanic Responses to the Winter Storm Outbreak of February 2021 in the Gulf of Mexico from In Situ and Satellite Observations. Remote Sensing. 2023; 15(12):2967. https://doi.org/10.3390/rs15122967
Chicago/Turabian StyleWang, Zhankun, Korak Saha, Ebenezer S. Nyadjro, Yongsheng Zhang, Boyin Huang, and James Reagan. 2023. "Oceanic Responses to the Winter Storm Outbreak of February 2021 in the Gulf of Mexico from In Situ and Satellite Observations" Remote Sensing 15, no. 12: 2967. https://doi.org/10.3390/rs15122967
APA StyleWang, Z., Saha, K., Nyadjro, E. S., Zhang, Y., Huang, B., & Reagan, J. (2023). Oceanic Responses to the Winter Storm Outbreak of February 2021 in the Gulf of Mexico from In Situ and Satellite Observations. Remote Sensing, 15(12), 2967. https://doi.org/10.3390/rs15122967