Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links
Abstract
:1. Introduction
2. Method
2.1. International Height Reference System and Vertical Height Reference System
2.2. SFST Method
2.3. Determination of the Height Difference between Two Ground Height Datum Stations
3. Experiment Setup
4. Data Processing
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petit, G.; Luzum, B. IERS Conventions (2010). IERS Tech. Note 2010, 36, 1–179. [Google Scholar]
- Ihde, J.; Sánchez, L.; Barzaghi, R.; Drewes, H.; Foerste, C.; Gruber, T.; Liebsch, G.; Marti, U.; Pail, R.; Sideris, M. Definition and Proposed Realization of the International Height Reference System (IHRS). Surv. Geophys. 2017, 38, 549–570. [Google Scholar] [CrossRef]
- Sánchez, L.; Čunderlík, R.; Dayoub, N.; Mikula, K.; Minarechová, Z.; Šíma, Z.; Vatrt, V.; Vojtíšková, M. A conventional value for the geoid reference potential 0W0. J. Geod. 2016, 90, 815–835. [Google Scholar] [CrossRef]
- Sideris, M. Geodetic World Height System Unification. In Handbook of Geomathematics; Freeden, W., Zuhair Nashed, M., Sonar, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3067–3085. [Google Scholar]
- Sánchez, L.; Sideris, M.G. Vertical datum unification for the International Height Reference System (IHRS). Geophys. J. Int. 2017, 209, 570–586. [Google Scholar] [CrossRef]
- Stöcker-Meier, E. Theory of oceanic levelling for improving the geoid from satellite altimetry. Bull. Am. Assoc. Hist. Nurs. 1990, 64, 247–258. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Hughes, C.W.; Bingham, R.J.; Gruber, T. Towards worldwide height system unification using ocean information. J. Geod. Sci. 2012, 2, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Rummel, R.; Teunissen, P. Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull. Am. Assoc. Hist. Nurs. 1988, 62, 477–498. [Google Scholar] [CrossRef]
- Gerlach, C.; Rummel, R. Global height system unification with GOCE: A simulation study on the indirect bias term in the GBVP approach. J. Geod. 2013, 87, 57–67. [Google Scholar] [CrossRef]
- Rangelova, E.; Sideris, M.G.; Amjadiparvar, B.; Hayden, T. Height Datum Unification by Means of the GBVP Approach Using Tide Gauges. In Proceedings of the VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy, 17–21 June 2013; Springer International Publishing: New York, NY, USA, 2016; pp. 121–129. [Google Scholar]
- Amjadiparvar, B.; Rangelova, E.; Sideris, M.G. The GBVP approach for vertical datum unification: Recent results in North America. J. Geod. 2016, 90, 45–63. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, 406. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.; Kuhn, M. Evaluation of high-degree series expansions of the topographic potential to higher-order powers. J. Geophys. Res. Solid Earth 2012, 117, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Die Feldgleichungen der Gravitation. Sitzungsberichte Königlich PreußIschen Akad. Wiss. 1915, 1, 844–847. [Google Scholar]
- Vermeer, M. Chronometric Levelling; Suomen Geodeettinen Laitos: Masala, Finland, 1983; pp. 1–7. [Google Scholar]
- Bjerhammar, A. On a relativistic geodesy. Bull. Am. Assoc. Hist. Nurs. 1985, 59, 207–220. [Google Scholar] [CrossRef]
- McGrew, W.F.; Zhang, X.; Fasano, R.J.; Schäffer, S.A.; Beloy, K.; Nicolodi, D.; Brown, R.C.; Hinkley, N.; Milani, G.; Schioppo, M.; et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 2018, 564, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Guan, H.; Zeng, M.; Tang, L.; Gao, K. 40Ca+ ion optical clock with micromotion-induced shifts below 10−18. Phys. Rev. A 2019, 99, 011401. [Google Scholar] [CrossRef]
- Oelker, E.; Hutson, R.B.; Kennedy, C.J.; Sonderhouse, L.; Bothwell, T.; Goban, A.; Kedar, D.; Sanner, C.; Robinson, J.M.; Marti, G.E.; et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 2019, 13, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Dolde, J.; Lochab, V.; Merriman, B.N.; Li, H.; Kolkowitz, S. Differential clock comparisons with a multiplexed optical lattice clock. Nature 2022, 602, 425–430. [Google Scholar] [CrossRef]
- Müller, J.; Soffel, M.; Klioner, S.A. Geodesy and relativity. J. Geod. 2008, 82, 133–145. [Google Scholar] [CrossRef]
- Kopeikin, S.; Efroimsky, M.; Kaplan, G. Relativistic Geodesy. In Relativistic Celestial Mechanics of the Solar System; Bulletin of the American Astronomical Society; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; Volume 83, pp. 671–714. [Google Scholar]
- Flury, J. Relativistic geodesy. J. Phys. Conf. Ser. 2016, 723, 012051. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Lämmerzahl, C. (Eds.) Relativistic Geodesy: Foundations and Applications; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Riehle, F. Optical clock networks. Nat. Photonics 2017, 11, 25. [Google Scholar] [CrossRef]
- Takano, T.; Takamoto, M.; Ushijima, I.; Ohmae, N.; Akatsuka, T.; Yamaguchi, A.; Kuroishi, Y.; Munekane, H.; Miyahara, B.; Katori, H. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photonics 2016, 10, 662. [Google Scholar] [CrossRef]
- Lion, G.; Panet, I.; Wolf, P.; Guerlin, C.; Bize, S.; Delva, P. Determination of a high spatial resolution geopotential model using atomic clock comparisons. J. Geod. 2017, 91, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Shen, W.B.; Peng, Z.; Liu, T.; Zhang, S.; Chao, D. Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique. J. Earth Sci. 2019, 30, 422–428. [Google Scholar] [CrossRef]
- Hoang, A.T.; Shen, Z.; Wu, K.; Ning, A.; Shen, W. Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks’ Frequency Comparisons. Remote Sens. 2022, 14, 4850. [Google Scholar] [CrossRef]
- Grotti, J.; Koller, S.; Vogt, S.; Häfner, S.; Sterr, U.; Lisdat, C.; Denker, H.; Voigt, C.; Timmen, L.; Rolland, A.; et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 2018, 14, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Müller, J.; Lämmerzahl, C. Clock networks for height system unification: A simulation study. Geophys. J. Int. 2019, 216, 1594–1607. [Google Scholar] [CrossRef]
- Shen, W.; Chao, D.; Jin, B. On relativistic geoid. Boll. Geod. Sci. Affin. 1993, 52, 207–216. [Google Scholar]
- Shen, Z.; Shen, W.B.; Zhang, S. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system. Geophys. J. Int. 2016, 206, 1162–1168. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Shen, W.B.; Zhang, S. Determination of Gravitational Potential at Ground Using Optical-Atomic Clocks on Board Satellites and on Ground Stations and Relevant Simulation Experiments. Surv. Geophys. 2017, 38, 757–780. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Shen, W.B.; Zhang, T.; He, L.; Cai, Z.; Tian, X.; Zhang, P. An improved approach for testing gravitational redshift via satellite-based three frequency links combination. Adv. Space Res. 2021, 68, 2776–2790. [Google Scholar] [CrossRef]
- Drewes, H.; Kuglitsch, F.; Adám, J.; Rózsa, S. The Geodesist’s Handbook 2016. J. Geod. 2016, 90, 907–1205. [Google Scholar] [CrossRef]
- Luz, R.T.; Fortes, L.P.S.; Hoyer, M.; Drewes, H. The Vertical Reference Frame for the Americas—The Sirgas 2000 GPS Campaign. In Proceedings of the Vertical Reference Systems, Cartagena, Colombia, 20–23 February 2001; Springer: Berlin/Heidelberg, Germany, 2002; pp. 302–305. [Google Scholar]
- Sanchez, L. Definition and Realisation of the SIRGAS Vertical Reference System within a Globally Unified Height System. In Proceedings of the Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools IAG Symposium, Cairns, Australia, 22–26 August 2005; Tregoning, P., Rizos, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 638–645. [Google Scholar]
- Ihde, J.; Mäkinen, J.; Sacher, M. Conventions for the Definition and Realization of a European Vertical Reference System (EVRS)–EVRS Conventions 2007; IAG Sub-commission 1.3a EUREF: Vancouver, BC, Canada, 2008; pp. 1–10. [Google Scholar]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–405. [Google Scholar]
- Torge, W.; Müller, J. Geodesy; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Vessot, R.F.C.; Levine, M.W. A test of the equivalence principle using a space-borne clock. Gen. Relat. Grav. 1979, 10, 181–204. [Google Scholar] [CrossRef]
- Vessot, R.F.C.; Levine, M.W.; Mattison, E.M.; Blomberg, E.L.; Hoffman, T.E.; Nystrom, G.U.; Farrel, B.F.; Decher, R.; Eby, P.B.; Baugher, C.R.; et al. Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser. Phys. Rev. Lett. 1980, 45, 2081–2084. [Google Scholar] [CrossRef]
- Cacciapuoti, L.; Salomon, C. Atomic Clock Ensemble in Space (ACES). Eur. Space Agency 2011, 327, 295–297. [Google Scholar]
- Horemuž, M.; Andersson, J.V. Polynomial interpolation of GPS satellite coordinates. GPS Solut. 2006, 10, 67–72. [Google Scholar] [CrossRef]
- Rawer, K.; Bilitza, D.; Ramakrishnan, S. Goals and status of the International Reference Ionosphere. Rev. Geophys. 1978, 16, 177. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International reference ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Boehm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Namazov, S.A.; Novikov, V.D.; Khmel’nitskii, I.A. Doppler frequency shift during ionospheric propagation of decameter radio waves (review). Radiophys. Quantum Electron. 1975, 18, 345–364. [Google Scholar] [CrossRef]
- Millman, G.H.; Arabadjis, M.C. Tropospheric and Ionospheric Phase Perturbations and Doppler Frequency Shift Effects; General Electric Company: New York, NY, USA, 1984; Volume 85. [Google Scholar]
- Voigt, C.; Förste, C.; Wziontek, H.; Crossley, D.; Meurers, B.; Pálinkáš, V.; Hinderer, J.; Boy, J.P.; Barriot, J.P.; Sun, H. The Data Base of the International Geodynamics and Earth Tide Service (IGETS). In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; Volume 19, p. 4947. [Google Scholar]
- Major, F.G. The Quantum Beat: The Physical Principles of Atomic Clocks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Galleani, L.; Sacerdote, L.; Tavella, P.; Zucca, C. A mathematical model for the atomic clock error. Metrologia 2003, 40, S257. [Google Scholar] [CrossRef]
- Poutanen, M.; Vermeer, M.; Mäkinen, J. The permanent tide in GPS positioning. J. Geod. 1996, 70, 499–504. [Google Scholar] [CrossRef]
- Li, F.; Lei, J.; Zhang, S.; Ma, C.; Hao, W.; E, D.; Zhang, Q. The impact of solid Earth-tide model error on tropospheric zenith delay estimates and GPS coordinate time series. Surv. Rev. 2018, 50, 355–363. [Google Scholar] [CrossRef]
- Penna, N.T.; Bos, M.S.; Baker, T.F.; Scherneck, H.G. Assessing the accuracy of predicted ocean tide loading displacement values. J. Geod. 2008, 82, 893–907. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Tapley, B.; Bettadpur, S.; Ries, J.; Nagel, P.; Pastor, R. Precise orbit determination for the GRACE mission using only GPS data. J. Geod. 2006, 80, 322–331. [Google Scholar] [CrossRef]
- Sharifi, M.A.; Seif, M.R.; Hadi, M.A. A Comparison between Numerical Differentiation and Kalman Filtering for a Leo Satellite Velocity Determination. Artif. Satell. 2013, 48, 103–110. [Google Scholar] [CrossRef] [Green Version]
Entities | Values of Parameters | |
---|---|---|
Satellite | ID | SVN-56 (GPS Navigation Sat.) |
Coord. | from (−19,167.235509, 3652.729794, 18,038.749481) | |
to (−26,493.102586, 424.868409, 3830.004962) | ||
Qingdao DS | LLA | (36.06974°N, 120.32172°E, 77.472 m) |
ECEF (m) | (−2,605,813.108, 4,455,436.499, 3,734,494.956) | |
OH (m) | 72.260 | |
San Francisco DS | LLA | (37.76985°N, 122.46616°W, 75.878 m) |
ECEF(m) | (−2,709,867.959, −4,259,189.792, 3,885,328.909) | |
OH (m) | 109.126 | |
Gravity field model | EGM2008 | |
Ionospheric model | International Reference Ionosphere | |
Tropospheric model | Global Pressure and Temperature | |
Tide correction | Tidal Potential | |
Observation duration | from 6:00 a.m. to 7:30 a.m., 1 March 2023, | |
Measurement interval | 5 s | |
Height systems diff. | 1.000 m (China HS is higher than US HS) |
Influential Factor | (Residual) Error Magnitude in |
---|---|
ionospheric correction residual | |
tropospheric correction residual | |
tidal correction residual | (0.1 m2/s2) |
position and velocity | (10 mm and 0.1 mm/s c) |
asynchronism | (below 1 ms) |
clock error |
Experiment | Height Diff. between China’s | Offset to True | STD |
---|---|---|---|
No. | VHS and the US’ VHS (m) | Value (1 m) | (m) |
1 | 0.964 | −0.036 | 0.121 |
2 | 1.072 | 0.072 | 0.133 |
3 | 0.998 | −0.002 | 0.128 |
4 | 0.965 | −0.035 | 0.116 |
5 | 1.005 | 0.005 | 0.119 |
6 | 0.992 | −0.008 | 0.118 |
7 | 1.014 | 0.014 | 0.118 |
8 | 0.925 | −0.075 | 0.124 |
9 | 1.049 | 0.049 | 0.126 |
10 | 1.027 | 0.027 | 0.124 |
Average | 1.001 | 0.001 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Shen, W.; Zhang, S.; Shum, C.K.; Zhang, T.; He, L.; Cai, Z.; Xiong, S.; Wang, L. Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links. Remote Sens. 2023, 15, 3020. https://doi.org/10.3390/rs15123020
Shen Z, Shen W, Zhang S, Shum CK, Zhang T, He L, Cai Z, Xiong S, Wang L. Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links. Remote Sensing. 2023; 15(12):3020. https://doi.org/10.3390/rs15123020
Chicago/Turabian StyleShen, Ziyu, Wenbin Shen, Shuangxi Zhang, C. K. Shum, Tengxu Zhang, Lin He, Zhan Cai, Si Xiong, and Lingxuan Wang. 2023. "Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links" Remote Sensing 15, no. 12: 3020. https://doi.org/10.3390/rs15123020
APA StyleShen, Z., Shen, W., Zhang, S., Shum, C. K., Zhang, T., He, L., Cai, Z., Xiong, S., & Wang, L. (2023). Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links. Remote Sensing, 15(12), 3020. https://doi.org/10.3390/rs15123020