SAR Coherence in Detecting Fluvial Sediment Transport Events in Arid Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Description
- Study area. Although the results will show that a precise delimitation of the study area is not critical, the results will be clearer if the study area is limited to the area potentially affected by the phenomena of interest and avoids areas affected by other phenomena that also alter the coherence.
- Rasters of InSAR coherence. Calculation of the rasters (i.e., maps) of coherence between consecutive SAR images. Working with rasters between consecutive images allows one to (i) minimise the temporal baseline and, therefore, its effect on coherence; (ii) reduce the task load, since it reduces the number of rasters to be built (other methodologies proposed in the literature calculate the coherence for all the possible pairs of SAR images); (iii) simplify the task, since only a series of rasters are built and no previous analysis is needed to determine the pairs of images to calculate the coherence for; and (iv) automatise the task, making it more suitable for monitoring systems. Note that a raster of InSAR coherence does not correspond to a date but to a period, the time lapse between the involved SAR images.
- Histograms. Construction of the histograms of the rasters of coherence between consecutive SAR images. The results will show that most of the rasters will present similar histograms, whereas some others will present a clearly different pattern. These different histograms correspond to significant variations in coherence and, therefore, potential fluvial sediment transport events. Thus, this step will provide a preliminary visual classification of the rasters into two groups: events and non-events. Note that, in addition, the sequence of “different” histograms will also show the duration of the temporal effects of each event (such as the changes in the air humidity or the ephemeral vegetation mentioned in the Introduction).
- Potential markers. The markers need to be parameters of the histograms that evolve in time, i.e., along the series of rasters. Thus, in this step, the time series of the potential markers are calculated. The following potential markers were considered here: the average coherence, the median, the mode, the frequency of the mode, the standard deviation and the difference between percentiles 90 and 10.
- Optimal marker. Identification of the optimal marker, that with the greatest predictive classification capacity. This step is based on two techniques: partial least squares discriminant analysis (PLS-DA) and receiving operating characteristic (ROC) curves, which are explained in Section 2.1.2. In addition, the PLS-DA also evaluates how distinguishable the two groups of rasters in step 3 are (“events” and “non-events”), i.e., the PLS-DA validates the visual classification of the histograms.
- Threshold. Determination of the threshold of the optimal marker that indicates the occurrence of an event that has “significantly” affected the InSAR coherence. If the basic hypotheses are fulfilled and the changes in coherence can be related to one single phenomenon—fluvial sediment transport events, in this case—then an increase or decrease in the value of the optimal marker above or below the threshold will indicate the occurrence of this phenomenon.
2.1.2. Methods
2.2. Case Study
- 7.
- Camar. A gully where there was evidence of damages caused by flash floods was selected to perform a first test. In order to avoid any interference related to the rugged topography, this study area was limited to the downstream edge of the gully and its alluvial fan.
- 8.
- Socaire. A second study area with different characteristics was selected for verification: it includes the alluvial fan of three gullies that converge.
- 9.
- Eastern slopes. Finally, in order to exploit the capacity of InSAR to cover large areas, the study area was enlarged to include all the eastern slopes of Salar de Atacama, from the summits to the alluvial fans.
2.3. Data
2.3.1. SAR Data
2.3.2. Meteorological Data
3. Results and Discussion
3.1. Construction of the Model
3.2. Validation
- Hypothesis: the relative humidity of the air only affects the InSAR coherence during and shortly after rainfall events. Confirmed: no correlation is observed (Figure 11a).
- Hypothesis: with Sentinel, the temporal baseline does not significantly affect the coherence between consecutive SAR images. Confirmed: no correlations are observed between the temporal baseline and any of the markers (Figure 11b).
- Hypothesis: with Sentinel, the perpendicular baseline does not significantly affect the InSAR coherence either. Rejected: the highest values of the average coherence between consecutive SAR images show a clear negative linear trend with the perpendicular baseline (Figure 12a). This correlation is interpreted as the effect of the perpendicular baseline on the InSAR coherence, while the dispersion of the data for lower values is related to the events of fluvial sediment transport. Note that the validation data have the largest perpendicular baselines of the period 2015–2019, i.e., larger than the calibration data (Figure 12a,b).
3.3. Correction of the Model
3.4. Validation of the Corrected Model
3.5. Meteorological Variables
3.6. Sensitivity Analysis to the Study Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Coherence Raster | 1st Image | 2nd Image | Perpendicular Baseline (m) | Temporal Baseline (d) |
---|---|---|---|---|
1 | 02/04/2015 | 26/04/2015 | 117 | 24 |
2 | 26/04/2015 | 20/05/2015 | 50 | 24 |
3 | 20/05/2015 | 13/06/2015 | 90 | 24 |
4 | 13/06/2015 | 07/07/2015 | 110 | 24 |
5 | 07/07/2015 | 31/07/2015 | 41 | 24 |
6 | 31/07/2015 | 24/08/2015 | 91 | 24 |
7 | 24/08/2015 | 17/09/2015 | 119 | 24 |
8 | 17/09/2015 | 11/10/2015 | 16 | 24 |
9 | 11/10/2015 | 04/11/2015 | 50 | 24 |
10 | 04/11/2015 | 28/11/2015 | 29 | 24 |
11 | 28/11/2015 | 22/12/2015 | 54 | 24 |
12 | 22/12/2015 | 15/01/2016 | 58 | 24 |
13 | 15/01/2016 | 03/03/2016 | 45 | 48 |
14 | 03/03/2016 | 27/03/2016 | 10 | 24 |
15 | 27/03/2016 | 20/04/2016 | 72 | 24 |
16 | 20/04/2016 | 14/05/2016 | 79 | 24 |
17 | 14/05/2016 | 07/06/2016 | 71 | 24 |
18 | 07/06/2016 | 25/07/2016 | 28 | 48 |
19 | 25/07/2016 | 18/08/2016 | 30 | 24 |
20 | 18/08/2016 | 11/09/2016 | 58 | 24 |
21 | 11/09/2016 | 29/09/2016 | 66 | 18 |
22 | 29/09/2016 | 11/10/2016 | 77 | 12 |
23 | 11/10/2016 | 04/11/2016 | 9 | 24 |
24 | 04/11/2016 | 28/11/2016 | 100 | 24 |
25 | 28/11/2016 | 22/12/2016 | 97 | 24 |
26 | 22/12/2016 | 15/01/2017 | 16 | 24 |
27 | 15/01/2017 | 08/02/2017 | 84 | 24 |
28 | 08/02/2017 | 04/03/2017 | 19 | 24 |
29 | 04/03/2017 | 16/03/2017 | 75 | 12 |
30 | 16/03/2017 | 28/03/2017 | 49 | 12 |
31 | 28/03/2017 | 09/04/2017 | 52 | 12 |
32 | 09/04/2017 | 21/04/2017 | 43 | 12 |
33 | 21/04/2017 | 03/05/2017 | 4 | 12 |
34 | 03/05/2017 | 15/05/2017 | 22 | 12 |
35 | 15/05/2017 | 27/05/2017 | 86 | 12 |
36 | 27/05/2017 | 08/06/2017 | 54 | 12 |
37 | 08/06/2017 | 20/06/2017 | 36 | 12 |
38 | 20/06/2017 | 02/07/2017 | 6 | 12 |
39 | 02/07/2017 | 14/07/2017 | 61 | 12 |
40 | 14/07/2017 | 26/07/2017 | 68 | 12 |
41 | 26/07/2017 | 07/08/2017 | 11 | 12 |
42 | 07/08/2017 | 19/08/2017 | 15 | 12 |
43 | 19/08/2017 | 31/08/2017 | 51 | 12 |
44 | 31/08/2017 | 12/09/2017 | 34 | 12 |
45 | 12/09/2017 | 24/09/2017 | 17 | 12 |
46 | 24/09/2017 | 06/10/2017 | 92 | 12 |
47 | 06/10/2017 | 18/10/2017 | 9 | 12 |
48 | 18/10/2017 | 30/10/2017 | 80 | 12 |
49 | 30/10/2017 | 11/11/2017 | 27 | 12 |
50 | 11/11/2017 | 23/11/2017 | 15 | 12 |
51 | 23/11/2017 | 05/12/2017 | 87 | 12 |
52 | 05/12/2017 | 17/12/2017 | 4 | 12 |
53 | 17/12/2017 | 29/12/2017 | 35 | 12 |
54 | 29/12/2017 | 10/01/2018 | 48 | 12 |
55 | 10/01/2018 | 22/01/2018 | 1 | 12 |
56 | 22/01/2018 | 03/02/2018 | 41 | 12 |
57 | 03/02/2018 | 15/02/2018 | 5 | 12 |
58 | 15/02/2018 | 27/02/2018 | 7 | 12 |
59 | 27/02/2018 | 11/03/2018 | 14 | 12 |
60 | 11/03/2018 | 23/03/2018 | 38 | 12 |
61 | 23/03/2018 | 04/04/2018 | 103 | 12 |
62 | 04/04/2018 | 16/04/2018 | 59 | 12 |
63 | 16/04/2018 | 22/04/2018 | 17 | 6 |
64 | 22/04/2018 | 28/04/2018 | 26 | 6 |
65 | 28/04/2018 | 04/05/2018 | 15 | 6 |
66 | 04/05/2018 | 10/05/2018 | 81 | 6 |
67 | 10/05/2018 | 22/05/2018 | 14 | 12 |
68 | 22/05/2018 | 28/05/2018 | 28 | 6 |
69 | 28/05/2018 | 03/06/2018 | 40 | 6 |
70 | 03/06/2018 | 09/06/2018 | 61 | 6 |
71 | 09/06/2018 | 15/06/2018 | 60 | 6 |
72 | 15/06/2018 | 21/06/2018 | 40 | 6 |
73 | 21/06/2018 | 27/06/2018 | 64 | 6 |
74 | 27/06/2018 | 03/07/2018 | 17 | 6 |
Coherence Raster | 1st Image | 2nd Image | Perpendicular Baseline (m) | Temporal Baseline (d) |
75 | 03/07/2018 | 09/07/2018 | 75 | 6 |
76 | 09/07/2018 | 15/07/2018 | 37 | 6 |
77 | 15/07/2018 | 21/07/2018 | 139 | 6 |
78 | 21/07/2018 | 27/07/2018 | 151 | 6 |
79 | 27/07/2018 | 02/08/2018 | 18 | 6 |
80 | 02/08/2018 | 08/08/2018 | 11 | 6 |
81 | 08/08/2018 | 14/08/2018 | 20 | 6 |
82 | 14/08/2018 | 20/08/2018 | 74 | 6 |
83 | 20/08/2018 | 26/08/2018 | 71 | 6 |
84 | 26/08/2018 | 01/09/2018 | 103 | 6 |
85 | 01/09/2018 | 07/09/2018 | 70 | 6 |
86 | 07/09/2018 | 13/09/2018 | 28 | 6 |
87 | 13/09/2018 | 19/09/2018 | 70 | 6 |
88 | 19/09/2018 | 25/09/2018 | 103 | 6 |
89 | 25/09/2018 | 01/10/2018 | 148 | 6 |
90 | 01/10/2018 | 07/10/2018 | 129 | 6 |
91 | 07/10/2018 | 13/10/2018 | 137 | 6 |
92 | 13/10/2018 | 19/10/2018 | 31 | 6 |
93 | 19/10/2018 | 31/10/2018 | 9 | 12 |
94 | 31/10/2018 | 06/11/2018 | 149 | 6 |
95 | 06/11/2018 | 12/11/2018 | 101 | 6 |
96 | 12/11/2018 | 18/11/2018 | 34 | 6 |
97 | 18/11/2018 | 24/11/2018 | 119 | 6 |
98 | 24/11/2018 | 30/11/2018 | 91 | 6 |
99 | 30/11/2018 | 06/12/2018 | 23 | 6 |
100 | 06/12/2018 | 12/12/2018 | 19 | 6 |
101 | 12/12/2018 | 18/12/2018 | 59 | 6 |
102 | 18/12/2018 | 24/12/2018 | 95 | 6 |
103 | 24/12/2018 | 30/12/2018 | 15 | 6 |
104 | 30/12/2018 | 05/01/2019 | 73 | 6 |
105 | 05/01/2019 | 11/01/2019 | 48 | 6 |
106 | 11/01/2019 | 17/01/2019 | 31 | 6 |
107 | 17/01/2019 | 23/01/2019 | 56 | 6 |
108 | 23/01/2019 | 29/01/2019 | 13 | 6 |
109 | 29/01/2019 | 04/02/2019 | 141 | 6 |
110 | 04/02/2019 | 10/02/2019 | 156 | 6 |
111 | 10/02/2019 | 16/02/2019 | 59 | 6 |
112 | 16/02/2019 | 22/02/2019 | 80 | 6 |
113 | 22/02/2019 | 28/02/2019 | 7 | 6 |
114 | 28/02/2019 | 06/03/2019 | 61 | 6 |
115 | 06/03/2019 | 12/03/2019 | 46 | 6 |
116 | 12/03/2019 | 18/03/2019 | 91 | 6 |
117 | 18/03/2019 | 24/03/2019 | 109 | 6 |
118 | 24/03/2019 | 30/03/2019 | 37 | 6 |
119 | 30/03/2019 | 05/04/2019 | 14 | 6 |
120 | 05/04/2019 | 11/04/2019 | 33 | 6 |
121 | 11/04/2019 | 17/04/2019 | 36 | 6 |
122 | 17/04/2019 | 23/04/2019 | 84 | 6 |
123 | 23/04/2019 | 29/04/2019 | 13 | 6 |
124 | 29/04/2019 | 05/05/2019 | 93 | 6 |
125 | 05/05/2019 | 17/05/2019 | 21 | 12 |
126 | 17/05/2019 | 23/05/2019 | 12 | 6 |
127 | 23/05/2019 | 29/05/2019 | 5 | 6 |
128 | 29/05/2019 | 04/06/2019 | 15 | 6 |
129 | 04/06/2019 | 10/06/2019 | 19 | 6 |
130 | 10/06/2019 | 16/06/2019 | 73 | 6 |
131 | 16/06/2019 | 22/06/2019 | 78 | 6 |
132 | 22/06/2019 | 28/06/2019 | 1 | 6 |
133 | 28/06/2019 | 04/07/2019 | −8 | 6 |
Meteorological Station | Rainfall from | Rainfall to | RH from | RH to | Latitude WGS84 (°) | Longitude WGS84 (°) | Altitude (m.a.s.l.) |
Camar | 01/01/1986 | 30/04/2018 | −23.410000 | −67.960000 | 2700 | ||
Chaxa | 01/08/1999 | 30/06/2018 | 01/01/2015 | 28/02/2019 | −23.288920 | −68.183490 | 2307 |
Cordillera_Sal | 19/10/2017 | 31/03/2021 | 20/10/2017 | 21/02/2019 | −23.641238 | −68.562540 | 2363 |
Interna | 10/07/2015 | 09/10/2017 | −23.042575 | −68.129584 | 2359 | ||
KCL | 01/01/2015 | 31/07/2018 | 01/01/2015 | 30/04/2019 | −23.542934 | −68.398893 | 2307 |
LZA10-1 | 20/04/2015 | 21/02/2019 | −23.741353 | −68.241920 | 2309 | ||
LZA12-1 | 19/04/2015 | 11/02/2019 | −23.348003 | −68.099744 | 2316 | ||
LZA12-2 | 17/04/2015 | 11/02/2019 | −23.553857 | −68.086140 | 2317 | ||
LZA12-3 | 02/06/2015 | 27/02/2019 | 19/04/2015 | 20/02/2019 | −23.042575 | −68.129584 | 2359 |
LZA3-1 | 19/04/2015 | 22/02/2019 | −23.474659 | −68.107141 | 2306 | ||
LZA3-2 | 09/07/2015 | 31/12/2019 | 20/04/2015 | 11/02/2019 | −23.430187 | −68.115476 | 2306 |
LZA3-3 | 19/04/2015 | 21/02/2019 | −23.360833 | −68.113168 | 2318 | ||
LZA7-1 | 16/04/2015 | 11/02/2019 | −23.561253 | −68.101482 | 2312 | ||
LZA7-2 | 06/02/2015 | 11/02/2019 | −23.610295 | −68.079437 | 2311 | ||
LZA9-1 | 20/04/2015 | 11/02/2019 | −23.693012 | −68.174465 | 2310 | ||
Monturaqui | 01/01/2015 | 30/06/2018 | −24.345094 | −68.437070 | 3430 | ||
Paso_Jama | 18/08/2016 | 10/01/2022 | 18/08/2016 | 23/01/2019 | −22.925545 | −67.703100 | 4825 |
Paso_Sico | 18/08/2016 | 08/01/2022 | 19/08/2016 | 30/09/2018 | −23.825336 | −67.441728 | 4323 |
Peine | 01/01/1986 | 30/04/2018 | −23.681879 | −68.066942 | 2460 | ||
Rio_Grande | 01/01/1986 | 30/04/2018 | −22.651977 | −68.167375 | 3217 | ||
San Pedro de Atacama | 01/01/1986 | 31/12/2016 | −22.910384 | −68.200528 | 2450 | ||
Socaire | 01/01/1986 | 31/12/2016 | −23.587870 | −67.891654 | 3251 | ||
SOP | 01/01/2015 | 31/07/2018 | 01/01/2015 | 31/03/2019 | −23.478960 | −68.385836 | 2300 |
Talabre | 01/08/1995 | 30/04/2018 | −23.315846 | −67.889638 | 3255 | ||
Tatio | 01/01/1986 | 13/01/2022 | −22.351323 | −68.016396 | 4370 | ||
Toconao_DGAC | 01/01/2015 | 25/08/2018 | −23.207819 | −68.026216 | 2495 | ||
Toconao_expe | 01/01/1986 | 28/02/2009 | −23.192581 | −67.999524 | 2500 | ||
Toconao_P. | 11/08/2016 | 09/01/2022 | 12/08/2016 | 31/12/2017 | −23.185721 | −68.005544 | 2492 |
Toconao_Q.1 | 19/08/2016 | 23/01/2019 | −23.217932 | −67.811939 | 3990 | ||
Toconao_Q.4 | 18/08/2016 | 31/12/2020 | 18/08/2016 | 01/01/2019 | −23.156794 | −67.900116 | 3437 |
Toconao_Retn | 01/01/1986 | 31/01/1991 | −23.197307 | −68.011185 | 2460 |
References
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping Small Elevation Changes Over Large Areas: Differential Radar Interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodríguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry—Invited paper. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, T.; Sauerbrey, J.; Hoffmeister, D.; May, S.M.; Baumhauer, R.; Bubenzer, O. Assessing Spatiotemporal Variations of Sentinel-1 InSAR Coherence at Different Time Scales over the Atacama Desert (Chile) between 2015 and 2018. Remote Sens. 2019, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Cabré, A.; Remy, D.; Aguilar, G.; Carretier, S.; Riquelme, R. Mapping rainstorm erosion associated with an individual storm from InSAR coherence loss validated by field evidence for the Atacama Desert. Earth Surf. Process. Landf. 2020, 45, 2091–2106. [Google Scholar] [CrossRef]
- Manzoni, M.; Molinari, M.E.; Monti-Guarnieri, A. Multitemporal InSAR Coherence Analysis and Methods for Sand Mitigation. Remote Sens. 2021, 13, 21. [Google Scholar] [CrossRef]
- Havivi, S.; Amir, D.; Schvartzman, I.; August, Y.; Maman, S.; Rotman, S.R.; Blumberg, D.G. Mapping dune dynamics by InSAR coherence. Earth Surf. Process. Landf. 2018, 43, 1229–1240. [Google Scholar] [CrossRef]
- Liu, J.G.; Black, A.; Lee, H.; Hanaizumi, H.; Moore, J.M. Land surface change detection in a desert area in Algeria using multi-temporal ERS SAR coherence images. Int. J. Remote Sens. 2001, 22, 2463–2477. [Google Scholar] [CrossRef]
- Song, Y.B.; Chen, C.B.; Xu, W.Q.; Zheng, H.W.; Bao, A.M.; Lei, J.Q.; Luo, G.P.; Chen, X.; Zhang, R.; Tan, Z.B. Mapping the temporal and spatial changes in crescent dunes using an interferometric synthetic aperture radar temporal decorrelation model. Aeolian Res. 2020, 46, 16. [Google Scholar] [CrossRef]
- Schepanski, K.; Wright, T.J.; Knippertz, P. Evidence for flash floods over deserts from loss of coherence in InSAR imagery. J. Geophys. Res. Atmos. 2012, 117, 10. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.P.; Lohman, R.B.; Jordan, T.E. InSAR constraints on soil moisture evolution after the March 2015 extreme precipitation event in Chile. Sci. Rep. 2017, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.C. Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Ann. Assoc. Am. Geogr. 2002, 92, 385–398. [Google Scholar] [CrossRef]
- Lee, H.; Liu, J.G. Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 223–232. [Google Scholar] [CrossRef]
- Jordan, T.E.; Lohman, R.B.; Tapia, L.; Pfeiffer, M.; Scott, C.P.; Amundso, R.; Godfrey, L.; Riquelme, R. Surface materials and landforms as controls on InSAR permanent and transient responses to precipitation events in a hyperarid desert, Chile. Remote Sens. Environ. 2020, 237, 18. [Google Scholar] [CrossRef]
- Kim, J.; Dorjsuren, M.; Choi, Y.; Purevjav, G. Reconstructed Aeolian Surface Erosion in Southern Mongolia by Multi-Temporal InSAR Phase Coherence Analyses. Front. Earth Sci. 2020, 8, 9. [Google Scholar] [CrossRef]
- Wegmüller, U.; Strozzi, T.; Farr, T.; Werner, C.L. Arid land surface characterization with repeat-pass SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 776–781. [Google Scholar] [CrossRef]
- Gaber, A.; Abdelkareem, M.; Abdelsadek, I.S.; Koch, M.; El-Baz, F. Using InSAR Coherence for Investigating the Interplay of Fluvial and Aeolian Features in Arid Lands: Implications for Groundwater Potential in Egypt. Remote Sens. 2018, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Marazuela, M.Á.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile). J. Hydrol. 2018, 561, 223–235. [Google Scholar] [CrossRef]
- Valdivielso, S.; Vázquez-Suñé, E.; Herrera, C.; Custodio, E. Characterization of precipitation and recharge in the peripheral aquifer of the Salar de Atacama. Sci. Total Environ. 2022, 806, 14. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso, S.; Hassanzadeh, A.; Vázquez-Suñé, E.; Custodio, E.; Criollo, R. Spatial distribution of meteorological factors controlling stable isotopes in precipitation in Northern Chile. J. Hydrol. 2022, 605, 12. [Google Scholar] [CrossRef]
- Marazuela, M.Á.; Vázquez-Suñé, E.; Ayora, C.; García-Gil, A.; Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: The damping capacity of salt flats. Sci. Total Environ. 2019, 654, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Dirección General de Aguas (DGA). Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea; Ministerio de Obras Públicas, Gobierno de Chile: Santiago de Chile, Chile, 2023.
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Bloschl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping. Water Resour. Res. 2008, 44, 13. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Román, M.O. MODIS Snow Products; Collection 6; User Guide; National Aeronautics and Space Administration: Washington, United States of America. 2016. Available online: https://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdf (accessed on 29 March 2023).
- Villaescusa-Nadal, J.L.; Vermote, E.; Franch, B.; Santamaria-Artigas, A.E.; Roger, J.C.; Skakun, S. MODIS-Based AVHRR Cloud and Snow Separation Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 13. [Google Scholar] [CrossRef]
- Parajka, J.; Bloschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Kilpys, J.; Pipiraite-Januskiene, S.; Rimkus, E. Snow climatology in Lithuania based on the cloud-free moderate resolution imaging spectroradiometer snow cover product. Int. J. Climatol. 2020, 40, 4690–4706. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A Satellite-Based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere 2014, 8, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Busetto, L.; Ranghetti, L. MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series. Comput. Geosci. 2016, 97, 40–48. [Google Scholar] [CrossRef] [Green Version]
Camar | Socaire | Eastern Slopes | |
---|---|---|---|
Average | 1.18 | 1.12 | 1.05 |
Median | 1.15 | 1.17 | 0.96 |
Mode | 0.26 | 1.12 | 0.94 |
Frequency of the mode | 1.20 | 0.91 | 1.11 |
Standard deviation | 1.23 | 0.79 | 0.95 |
p90–p10 | 0.52 | 0.82 | 0.97 |
Camar | Socaire | Eastern Slopes | |
---|---|---|---|
Average | 0.955 | 1.000 | 0.994 |
Median | 0.945 | 1.000 | 0.987 |
Mode | 0.917 | 0.998 | 0.947 |
Frequency of the mode | 0.969 | 0.975 | 0.998 |
Standard deviation | 0.957 | 0.866 | 0.943 |
p90–p10 | 0.951 | 0.892 | 0.977 |
Camar | Socaire | Eastern Slopes | |
---|---|---|---|
PLS-DA VIPs | Standard deviation | Median | Freq. mode |
Freq. mode | Average | Average | |
Average | Mode | p90–p10 | |
ROC curves AUCs | Freq. mode | Average | Freq. mode |
Standard deviation | Median | Average | |
Average | Mode | Median |
Sensitivity | Sens. + Spec. | Specificity | ||
---|---|---|---|---|
Rainfall (mm) | Threshold | 1.10 | 8.23 | 33.84 |
Sensitivity | 0.75 | 0.60 | 0.25 | |
Specificity | 0.50 | 0.80 | 1.00 | |
Thaw (km2/d) | Threshold | −0.7 | −12.5 | −58.7 |
Sensitivity | 0.95 | 0.75 | 0.15 | |
Specificity | 0.11 | 0.67 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botey i Bassols, J.; Bedia, C.; Cuevas-González, M.; Valdivielso, S.; Crosetto, M.; Vázquez-Suñé, E. SAR Coherence in Detecting Fluvial Sediment Transport Events in Arid Environments. Remote Sens. 2023, 15, 3034. https://doi.org/10.3390/rs15123034
Botey i Bassols J, Bedia C, Cuevas-González M, Valdivielso S, Crosetto M, Vázquez-Suñé E. SAR Coherence in Detecting Fluvial Sediment Transport Events in Arid Environments. Remote Sensing. 2023; 15(12):3034. https://doi.org/10.3390/rs15123034
Chicago/Turabian StyleBotey i Bassols, Joan, Carmen Bedia, María Cuevas-González, Sonia Valdivielso, Michele Crosetto, and Enric Vázquez-Suñé. 2023. "SAR Coherence in Detecting Fluvial Sediment Transport Events in Arid Environments" Remote Sensing 15, no. 12: 3034. https://doi.org/10.3390/rs15123034
APA StyleBotey i Bassols, J., Bedia, C., Cuevas-González, M., Valdivielso, S., Crosetto, M., & Vázquez-Suñé, E. (2023). SAR Coherence in Detecting Fluvial Sediment Transport Events in Arid Environments. Remote Sensing, 15(12), 3034. https://doi.org/10.3390/rs15123034