Technical Evaluation of Precipitation Forecast by Blending Weather Radar Based on New Spatial Test Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Key Technologies of Blending Forecast
3.1. Phase Correction of Precipitation Forecast by Model
3.2. Correction of Precipitation Intensity Forecast by Model
3.3. Blending of Radar Extrapolation Prediction and Model Correction Prediction
4. Test Methods
4.1. Point-to-Point Comprehensive Test
4.2. Spatial Comprehensive Test
4.2.1. MODE Test
4.2.2. SAL Test
5. A Case of Inspection and Evaluation
5.1. Case Introductions
5.2. Forecast Effect Test
5.2.1. Point-to-Point Comprehensive Test
5.2.2. Spatial Contrast Test
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinehart, R.E.; Garvey, E.T. Three-dimensional storm motion detection by conventional weather radar. Nature 1978, 273, 287–289. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Zhang, X.L. Review on Severe Convective Weather Short-Term Forecasting and Nowcasting. Meteorol. Mon. 2010, 36, 33–42. [Google Scholar]
- Wang, J.; Zhang, J.G. Methods and Techniques of Multiscale Composite Rainfall Nowcasting. Meteorol. Sci. Technol. 2008, 36, 524–528. [Google Scholar]
- Han, L.; Wang, H.Q. Application of Optical Flow Method to Nowcasting Convective Weather. Acta Sci. Nat. Univ. Pekin. 2008, 44, 751–755. [Google Scholar]
- Kong, R.; Wang, J.J. Applying Scale Decomposition Method to Verification of Quantitative Precipitation Nowcasts. J. Appl. Meteor. Sci. 2010, 21, 535–544. [Google Scholar]
- Cheng, C.L.; Chen, M.X. Short-term quantitative precipitation forecast experiments based on blending of nowcasting with numerical weather prediction. Acta Meteorol. Sin. 2013, 71, 397–415. [Google Scholar]
- Wang, D.; Wang, G.L. Comparisons Analysis on Short-Term Precipitation between the Radar-Based Extrapolation and the Meso-Scale Numerical Model Weather Prediction. Plateau Meteorol. 2014, 33, 811–822. [Google Scholar]
- Cao, C.Y.; Chen, Y.Z. The optical flow method and its application to nowcasting. Acta Meteorol. Sin. 2015, 73, 471–480. [Google Scholar]
- Guo, H.Y.; Chen, M.X. High resolution nowcasting experiment of severe convections based on deep learning. Acta Meteorol. Sin. 2019, 77, 715–727. [Google Scholar]
- Pan, L.J.; Zhang, H.F. Neighborhood-Based Precipitation Forecasting Capability Analysis of High-Resolution Models. J. Trop. Meteorol. 2015, 31, 632–642. [Google Scholar]
- Brownlee, K.A. A Wiley Publication in Applied Statistics. In Statistical Theory and Methodology in Science and Engineering, 2nd ed.; John Wiley & Sons Wiley: New York, NY, USA, 1965; pp. 26–30. [Google Scholar]
- Doswell, C.A.; Jones, R.D. On summary measures of skill in rare event forecasting based on contingency tables. Weather. Forecast. 1990, 5, 576–585. [Google Scholar] [CrossRef]
- Wang, G.L.; Zhao, C.G. Error Analysis of Radar Echo Extrapolation. Plateau Meteorol. 2013, 32, 874–883. [Google Scholar]
- Long, F.C.; Wang, G.R. The Application Analysis of MODE Method to the Rainfall Forecast Test. Meteorol. Mon. 2011, 37, 1498–1503. [Google Scholar]
- Mao, M.; Dai, J.H. Object-Based Verification and Evaluation for Different Types of Severe Convection Forecasting Products. Meteorol. Mon. 2016, 42, 389–397. [Google Scholar]
- Xue, C.F.; Pan, L.J. Diagnostic Analysis of Precipitation Forecasting from Japan Thin-Grid Model based on Mode. Plateau Meteorol. 2016, 35, 406–418. [Google Scholar]
- Liu, C.H.; Niu, R.Y. Object-Based Preciptitation Verfication Method and Its Application. Meteorol. Mon. 2013, 39, 681–690. [Google Scholar]
- Qu, Q.N.; Sheng, C.Y. Comparison of the multi-model forecasts for severe precipitation based on the object verification. Meteorol. Mon. 2019, 45, 908–919. [Google Scholar]
- Xu, C.L.; Wang, J.J. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteorol. Sin. 2017, 75, 851–876. [Google Scholar]
- Tang, W.Y.; Zeng, Y.G. FSS-based evaluation on convective weather forecasts in North China from high resolution models. J. Appl. Meteorol. Sci. 2018, 29, 513–523. [Google Scholar]
- Zhang, X.W.; Tang, W.Y. Comprehensive evaluations of GRAPES_3 km numerical model in forecasting convective storms using various verification methods. Meteorol. Mon. 2020, 46, 367–380. [Google Scholar]
- Horn, B.K.; Schunck, B.G. Determing optical flow. Artif. Intell. 1981, 17, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Aubert, G.; Deriche, R. Computing optical flow via variational techniques. SIAM J. Appl. Math. 1999, 60, 156–182. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.B.; Xiao, Y.J. Implementation of Improved Variational Optical Flow Parallel Algorithm. Comput. Appl. Softw. 2019, 36, 105–110. [Google Scholar]
- Lai, A.W.; Ma, H.D. A Squall Line Case Study of Assimilating the Radar Data, Retrieval of Water Vapor and In-Cloud Potential Temperature from Reflectivity in a 3DVAR Framework. Meteorol. Mon. 2021, 47, 932–952. [Google Scholar]
- Zawadzki, I.; Torlaschi, E.; Sauvageau, R. The Relationship between Mesoscale Thermodynamic Variables and Convective Precipitation. J. Atmos. Sci. 1981, 38, 1535–1540. [Google Scholar] [CrossRef]
WHRUC | GRAPES_3 km | |
---|---|---|
Forecast area | 28°~34°N, 108°~116.5°E | 20°~50°N, 73°~139°E |
Spatial resolution | 0.01° | 0.03° |
Time resolution | 08/20:00 1 h | 08/20:00 1 h |
Forecast time limit | 12 h | 36 h |
Background field | WHRAP/NCEP GFS | T639 |
Initial value of model | 3D-VAR | Downscaling cloud analysis |
Hits | Misses | Fales | Correct Negatives | ||
---|---|---|---|---|---|
0–1 h | WHRUC | 2 | 3 | 2 | 96 |
GRAPES_3 km | 3 | 2 | 2 | 90 | |
BLEND | 3 | 1 | 1 | 52 | |
1–2 h | WHRUC | 1 | 3 | 3 | 98 |
GRAPES_3 km | 2 | 3 | 2 | 91 | |
BLEND | 3 | 1 | 2 | 70 | |
2–3 h | WHRUC | 2 | 3 | 3 | 105 |
GRAPES_3 km | 2 | 4 | 2 | 109 | |
BLEND | 5 | 1 | 1 | 89 |
0–1 h | 1–2 h | 2–3 h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GRAPES _3 km | BLEND | GRAPES _3 km | BLEND | GRAPES _3 km | BLEND | |||||||
Obs | Pre | Obs | Pre | Obs | Pre | Obs | Pre | Obs | Pre | Obs | Pre | |
Spindle length | 2.8 | 2.6 | 2.6 | 2.8 | 2.4 | 2.4 | 3.0 | 3.1 | 1.9 | 2.7 | 1.9 | 2.1 |
Spindle inclination angle | 1.6 | 1.3 | 2.0 | 2.0 | 1.6 | 1.5 | 1.6 | 1.6 | 1.4 | 1.3 | 1.4 | 1.4 |
Rectangular window(x0) | 17.8 | 18.9 | 9.9 | 6.9 | 17.7 | 25.2 | 19.6 | 12.7 | 16.1 | 16.1 | 16.1 | 17.7 |
Rectangular window(y0) | 111.1 | 111.4 | 110.1 | 109.4 | 111.5 | 112.0 | 111.1 | 111.0 | 111.8 | 111.8 | 111.8 | 112.0 |
Rectangular window(x1) | 29.9 | 29.8 | 30.1 | 30.0 | 30.0 | 29.8 | 29.0 | 29.9 | 29.9 | 30.0 | 30.0 | 30.0 |
Rectangular window(y1) | 114.4 | 114.5 | 115.6 | 117.2 | 114.3 | 114.5 | 109.9 | 114.2 | 115.2 | 115.1 | 114.7 | 114.6 |
Centroid(x) | 30.9 | 30.9 | 31.0 | 30.9 | 30.9 | 31.0 | 30.9 | 30.8 | 30.9 | 30.9 | 30.9 | 30.8 |
Centroid(y) | 112.9 | 112.9 | 112.7 | 112.8 | 112.9 | 113.1 | 112.9 | 113.0 | 113.1 | 113.2 | 113.1 | 113.2 |
Area | 30.2 | 30.3 | 30.2 | 30.2 | 30.3 | 30.4 | 30.3 | 30.3 | 30.4 | 30.3 | 30.4 | 30.4 |
Median intensity | 1.5 | 1.3 | 1.4 | 1.5 | 1.4 | 1.0 | 1.5 | 1.7 | 1.4 | 1.2 | 1.4 | 1.5 |
Strength difference | 28.2 | 23.1 | 24.7 | 26.1 | 28.8 | 20.2 | 28.0 | 29.8 | 26.9 | 25.0 | 26.9 | 28.3 |
Centroid distance | −5.1 | 1.4 | −8.6 | 1.8 | −1.9 | 1.4 | ||||||
Angle difference | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | ||||||
Area ratio | 1.2 | 3.1 | 7.5 | 6.9 | 0 | 1.6 | ||||||
Overlap area ratio | 0.9 | 0.9 | 0.7 | 0.9 | 0.9 | 1.0 | ||||||
Area score | 0.7 | 0.8 | 0.4 | 0.8 | 0.7 | 0.8 | ||||||
Location score | 0.79 | 0.88 | 0.64 | 0.79 | 0.78 | 0.88 | ||||||
Median intensity | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Axial Angle score | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Ellipticity score | 1 | 1 | 1 | 1 | 0.61 | 1 | ||||||
Intensity score | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Total goal score | 0.94 | 0.96 | 0.89 | 0.94 | 0.90 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Z.; Ye, J.; Lai, A.; Ma, H.; Zhang, W. Technical Evaluation of Precipitation Forecast by Blending Weather Radar Based on New Spatial Test Method. Remote Sens. 2023, 15, 3134. https://doi.org/10.3390/rs15123134
Wang J, Wang Z, Ye J, Lai A, Ma H, Zhang W. Technical Evaluation of Precipitation Forecast by Blending Weather Radar Based on New Spatial Test Method. Remote Sensing. 2023; 15(12):3134. https://doi.org/10.3390/rs15123134
Chicago/Turabian StyleWang, Junchao, Zhibin Wang, Jintao Ye, Anwei Lai, Hedi Ma, and Wen Zhang. 2023. "Technical Evaluation of Precipitation Forecast by Blending Weather Radar Based on New Spatial Test Method" Remote Sensing 15, no. 12: 3134. https://doi.org/10.3390/rs15123134
APA StyleWang, J., Wang, Z., Ye, J., Lai, A., Ma, H., & Zhang, W. (2023). Technical Evaluation of Precipitation Forecast by Blending Weather Radar Based on New Spatial Test Method. Remote Sensing, 15(12), 3134. https://doi.org/10.3390/rs15123134