Temporal and Spatial Variations of Potential and Actual Evapotranspiration and the Driving Mechanism over Equatorial Africa Using Satellite and Reanalysis-Based Observation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Dataset Description
2.2.1. Satellite-Based Products
2.2.2. Reanalysis-Based Products
2.2.3. Gauge-Based Gridded Products
2.2.4. Auxiliary Data Products
2.3. Methods
2.3.1. Linear Trends
2.3.2. Break Detection Using a Bayesian Test
2.3.3. Standardized Anomalies
3. Results
3.1. Interannual and Seasonal Variations in ET
3.1.1. Seasonal Variability in PET and AET
3.1.2. Long-Term Changes in PET and AET
3.1.3. Detecting Abrupt Changes in PET and AET
3.2. Drivers of Interannual and Seasonal Variations in PET and AET
3.2.1. Spatial Correlation Maps
3.2.2. Temporal Correlation
3.2.3. Relationship between PET/AET and Global SST
3.2.4. Relationship between PET/AET and Large-Scale Circulations
4. Discussion
5. Conclusions
- The annual and seasonal variability in PET (AET) varied in different climatic zones in the region. The annual PET values range 80–≥140 mm, while the AET values range 50–≥90 mm from 1980 to 2020. Seasonal PET (AET) values are presented as boreal spring 110–128 (70–≥85) mm and autumn 109–125 (72–≥85) mm. Low values are recorded in summer 110−114 (70–85 mm) and winter 108−110 (58–78 mm).
- The interannual trends show an increasing (decreasing) trend at 0.035 (0.05) mm yr−1. PET mean (range) is 113 ((112–114) mm yr−1 and AET is 75.5 (72–77) mm yr−1. The PET (AET) seasonal trends were quantified over 40 years (1980–2020). The summer PET (AET) shows an upward (downward) trend at the same rate of 0.04 mm yr−1. The remaining seasons follow: autumn PET (AET) increased (decreased) at a rate of 0.06 (−0.02) mm yr−1. Winter PET (AET) increased (decreased) at a rate of 0.01 (−0.05) mm yr−1, whereas spring PET (AET) increased (decreased) at a rate of 0.02 (−0.09) mm yr−1. The PET abrupt change point occurred in 1995, whereas the AET abrupt change point occurred in 2000, based on the Bayesian test for change detection.
- The spatial characteristics of the correlations between PET/AET and climatic factors showed an inverse effect in semi-arid/arid conditions, whereas humid conditions showed identical correlation patterns. Humid conditions in the Congo Basin presented a negative spatial extent, with mixed correlation results in semi-arid regions and positive arid conditions. The spatial correlation showed an opposite trend, with increasing PET leading to decreasing AET during 1980–2020. The temporal dynamics revealed that air temperature, soil moisture (SM), and relative humidity are limiting factors that explain the PET/AET temporal dynamics more than precipitation and wind speed.
- The strong spatial distribution of the correlation is closely linked with global SST anomalies in the tropical Atlantic and Indian Oceans. The spatial correlation pattern is homogenous, with an identical magnitude of correlation values but opposite signs at annual and seasonal scales for both PET and AET variability. By analyzing possible regional atmospheric circulation patterns, the spatial dynamics revealed two major winds (i.e., the northward and southward winds), explaining both PET and AET interannual and seasonal variability.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage: Rome, Italy, 1998. [Google Scholar]
- Teuling, A.J.; Hirschi, M.; Ohmura, A.; Wild, M.; Reichstein, M.; Ciais, P.; Buchmann, N.; Ammann, C.; Montagnani, L.; Richardson, A.D.; et al. A regional perspective on trends in continental evaporation. Geophys. Res. Lett. 2009, 36, L02404. [Google Scholar] [CrossRef] [Green Version]
- van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J.; Teuling, A.J. Land-atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate. Geophys. Res. Lett. 2010, 37, L21401. [Google Scholar] [CrossRef] [Green Version]
- Haque, A. Estimating actual areal evapotranspiration from potential evapotranspiration using physical models based on complementary relationships and meteorological data. Bull. Eng. Geol. Environ. 2003, 62, 57–63. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Wang, S.; Pan, M.; Mu, Q.; Shi, X.; Mao, J.; Bruemmer, C.; Jassal, R.; Krishnan, P.; Li, J.; Black, T. Comparing Evapotranspiration from Eddy Covariance Measurements, Water Budgets, Remote Sensing, and Land Surface Models over Canada. J. Hydrometeorol. 2015, 16, 1540–1560. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Kiptala, J.K.; Mohamed, Y.; Mul, M.L.; Van der Zaag, P. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resour. Res. 2013, 49, 8495–8510. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, P.; Mu, X. Influence of Meteorological Factors on the Potential Evapotranspiration in Yanhe River Basin, China. Water 2021, 13, 1222. [Google Scholar] [CrossRef]
- Jahromi, M.N.; Miralles, D.; Koppa, A.; Rains, D.; Zand-Parsa, S.; Mosaffa, H.; Jamshidi, S. Ten Years of GLEAM: A Review of Scientific Advances and Applications. In Computational Intelligence for Water and Environmental Sciences; Bozorg-Haddad, O., Zolghadr-Asli, B., Eds.; Springer Nature: Singapore, 2022; pp. 525–540. [Google Scholar]
- Yang, X.; Wang, G.; Pan, X.; Zhang, Y. Spatio-temporal variability of terrestrial evapotranspiration in china from 1980 to 2011 based on gleam data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 132–141. [Google Scholar]
- Nooni, I.K.; Wang, G.; Hagan, D.F.T.; Lu, J.; Ullah, W.; Li, S. Evapotranspiration and its Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water 2019, 11, 1400. [Google Scholar] [CrossRef] [Green Version]
- Shijie, L.; Wang, G.; Zhu, C.; Lu, J.; Ullah, W.; Fiifi, D.; Hagan, D.; Kattel, G.; Peng, J. Attribution of global evapotranspiration trends based on the Budyko framework. Hydrol. Earth Syst. Sci. 2022, 26, 3691–3707. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Chen, T.; Shijie, L.; Fiifi, D.; Hagan, D.; Kattel, G.; Peng, J.; Tong, J.; Buda, S. A harmonized global land evaporation dataset from model-based products covering 1980–2017. Earth Syst. Sci. Data 2021, 13, 5879–5898. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Gong, T.; Hagan, D.; Wang, Y.; Tong, J.; Buda, S. Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theor. Appl. Climatol. 2019, 138, 1493–1510. [Google Scholar] [CrossRef]
- Wang, G.; Pan, J.; Shen, C.; Shijie, L.; Lu, J.; Lou, D.; Hagan, D. Evaluation of Evapotranspiration Estimates in the Yellow River Basin against the Water Balance Method. Water 2018, 10, 1884. [Google Scholar] [CrossRef] [Green Version]
- Shijie, L.; Wang, G.; Sun, S.; Hagan, D.; Chen, T.; Dolman, H.; Liu, Y. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J. Hydrol. 2021, 595, 126037. [Google Scholar] [CrossRef]
- Shijie, L.; Wang, G.; Sun, S.; Chen, H.; Peng, B.; Zhou, S.; Huang, Y.; Wang, J.; Deng, P. Assessment of Multi-Source Evapotranspiration Products over China Using Eddy Covariance Observations. Remote Sens. 2018, 10, 1692. [Google Scholar] [CrossRef] [Green Version]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Ismail, Z.B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
- Prăvălie, R.; Piticar, A.; Roșca, B.; Sfîcă, L.; Bandoc, G.; Tiscovschi, A.; Patriche, C. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. CATENA 2019, 172, 295–312. [Google Scholar] [CrossRef]
- Ahmadi, A.; Daccache, A.; Snyder, R.L.; Suvočarev, K. Meteorological driving forces of reference evapotranspiration and their trends in California. Sci. Total Environ. 2022, 849, 157823. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Bouchet, R.J. évapotranspiration réelle et potentielle signification climatique. Int. Assoc. Hydrol. Sci. 1963, 62, 134–142. [Google Scholar]
- Chen, Y.; Zhang, S.; Wang, Y. Analysis of the Spatial and Temporal Distribution of Potential Evapotranspiration in Akmola Oblast, Kazakhstan, and the Driving Factors. Remote Sens. 2022, 14, 5311. [Google Scholar] [CrossRef]
- Al-Hasani, A.A.J.; Shahid, S. Spatial distribution of the trends in potential evapotranspiration and its influencing climatic factors in Iraq. Theor. Appl. Climatol. 2022, 150, 677–696. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Ganeshi, N.G.; Mujumdar, M.; Takaya, Y.; Goswami, M.M.; Singh, B.B.; Krishnan, R.; Terao, T. Soil moisture revamps the temperature extremes in a warming climate over India. NPJ Clim. Atmos. Sci. 2023, 6, 12. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosc. 2011, 116, G00J07. [Google Scholar] [CrossRef] [Green Version]
- Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. Ocean. 2011, 116, C10025. [Google Scholar] [CrossRef]
- Hallam, S.; McCarthy, G.D.; Feng, X.; Josey, S.A.; Harris, E.; Düsterhus, A.; Ogungbenro, S.; Hirschi, J.J.M. The relationship between sea surface temperature anomalies, wind and translation speed and North Atlantic tropical cyclone rainfall over ocean and land. Environ. Res. Commun. 2023, 5, 025007. [Google Scholar] [CrossRef]
- Gnitou, G.T.; Ma, T.; Tan, G.; Ayugi, B.; Nooni, I.K.; Alabdulkarim, A.; Tian, Y. Evaluation of the Rossby Centre Regional Climate Model Rainfall Simulations over West Africa Using Large-Scale Spatial and Temporal Statistical Metrics. Atmosphere 2019, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Ajibola, F.O.; Zhou, B.; Tchalim Gnitou, G.; Onyejuruwa, A. Evaluation of the Performance of CMIP6 HighResMIP on West African Precipitation. Atmosphere 2020, 11, 1053. [Google Scholar] [CrossRef]
- Gnitou, G.T.; Tan, G.; Ma, T.; Akinola, E.O.; Nooni, I.K.; Babaousmail, H.; Al-Nabhan, N. Added value in dynamically downscaling seasonal mean temperature simulations over West Africa. Atmos. Res. 2021, 260, 105694. [Google Scholar] [CrossRef]
- Ayugi, B.; Dike, V.; Nadoya, H.N.; Babaousmail, H.; Mumo, R.; Ongoma, V. Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. Water 2021, 13, 2358. [Google Scholar] [CrossRef]
- Ayugi, B.; Ngoma, H.; Babaousmail, H.; Karim, R.; Iyakaremye, V.; Lim Kam Sian, K.T.C.; Ongoma, V. Evaluation and projection of mean surface temperature using CMIP6 models over East Africa. J. Afr. Earth Sci. 2021, 181, 104226. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Gnitou, G.T.; Ojara, M.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232, 104705. [Google Scholar] [CrossRef]
- Tamoffo, A.T.; Vondou, A.; Pokam, W.; Haensler, A.; Djomou, Z.; Fotso-Nguemo, T.C.; Tchotchou, L.; Nouayou, R. Daily characteristics of Central African rainfall in the REMO model. Theor. Appl. Climatol. 2019, 137, 2351–2368. [Google Scholar] [CrossRef]
- Dommo, A.; Vondou, A.; Philippon, N.; Eastman, R.; Moron, V.; Aloysius, N. The ERA5′s diurnal cycle of low-level clouds over Western Central Africa during June–September: Dynamic and thermodynamic processes. Atmos. Res. 2022, 280, 106426. [Google Scholar] [CrossRef]
- Taguela, T.; Pokam, W.; Washington, R. Rainfall in uncoupled and coupled versions of the Met Office Unified Model over Central Africa: Investigation of processes during the September–November rainy season. Int. J. Climatol. 2022, 42, 6311–6331. [Google Scholar] [CrossRef]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Ateba Boyomo, H.; Emmanuel, O.; William, M.; Asngar, T. Does climate change influence conflicts? Evidence for the Cameroonian regions. GeoJournal 2023. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C. Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. Int. J. Climatol. 2018, 38, 1375–1392. [Google Scholar] [CrossRef]
- Flaounas, E.; Bastin, S.; Janicot, S. Regional climate modelling of the 2006 West African monsoon: Sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim. Dyn. 2011, 36, 1083–1105. [Google Scholar] [CrossRef]
- Raj, J.; Bangalath, H.K.; Stenchikov, G. West African Monsoon: Current state and future projections in a high-resolution AGCM. Clim. Dyn. 2019, 52, 6441–6461. [Google Scholar] [CrossRef] [Green Version]
- Kothe, S.; Lüthi, D.; Ahrens, B. Analysis of the West African Monsoon system in the regional climate model COSMO-CLM. Int. J. Climatol. 2014, 34, 481–493. [Google Scholar] [CrossRef]
- Lafore, J.-P.; Flamant, C.; Guichard, F.; Parker, D.J.; Bouniol, D.; Fink, A.H.; Giraud, V.; Gosset, M.; Hall, N.; Höller, H.; et al. Progress in understanding of weather systems in West Africa. Atmos. Sci. Lett. 2011, 12, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Brandt, P.; Caniaux, G.; Bourlès, B.; Lazar, A.; Dengler, M.; Funk, A.; Hormann, V.; Giordani, H.; Marin, F. Equatorial upper-ocean dynamics and their interaction with the West African monsoon. Atmos. Sci. Lett. 2011, 12, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; van den Berg, M.J.; Gash, J.H.; Parinussa, R.M.; de Jeu, R.A.M.; Beck, H.E.; Holmes, T.R.H.; Jiménez, C.; Verhoest, N.E.C.; Dorigo, W.A.; et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Clim. Change 2014, 4, 122–126. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evapotranspiration using large scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- European Center for Medium-Range Weather Forecasts (ECMWF). Home Page. Available online: http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (accessed on 20 April 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Links between precipitation, circulation weather types and orography in central Italy. Int. J. Climatol. 2022, 42, 5807–5825. [Google Scholar] [CrossRef]
- Chen, A.; Chen, D.; Azorin-Molina, C. Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets. Int. J. Climatol. 2018, 38, 4314–4334. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, W. Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events. Int. J. Climatol. 2021, 41, 2625–2637. [Google Scholar] [CrossRef]
- Assamnew, A.D.; Mengistu Tsidu, G. Assessing improvement in the fifth-generation ECMWF atmospheric reanalysis precipitation over East Africa. Int. J. Climatol. 2023, 43, 17–37. [Google Scholar] [CrossRef]
- CRU. The Climatic Research Unit (CRU) Precipitation and air Temperature Hompage. Available online: https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 10 March 2023).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Onyutha, C. Trends and variability in African long-term precipitation. Stoch. Environ. Res. Risk Assess. 2018, 32, 2721–2739. [Google Scholar] [CrossRef]
- GHRSST. Global Data Assembly Center (GDAC) at the Jet Propulsion Laboratory (JPL) Physical Oceanography Distributed Active Archive Center (PO.DAAC) Homepage. Available online: http://ghrsst.jpl.nasa.gov/GHRSST_product_table.html (accessed on 20 April 2023).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.C.; Jones, P.D.; Osbon, T. CRU TS4.04: Climate Research Unit (CRU) Time-Series (TS) Version 4.04 of Highresolution Gridded Data of Monthly-by-Monthly Variation in Climate (January 1901–December 2019). Available online: https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc (accessed on 10 March 2023).
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Griffin, London. J. Econom. 1975, 13, 245–259. [Google Scholar]
- Theil, H. A rank invariant method of linear and polynomial regression analysis. Proc. Ned. Akad. Wet. 1950, 53, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- van de Schoot, R.; Depaoli, S.; King, R.; Kramer, B.; Märtens, K.; Tadesse, M.G.; Vannucci, M.; Gelman, A.; Veen, D.; Willemsen, J.; et al. Bayesian statistics and modelling. Nat. Rev. Methods Prim. 2021, 1, 1. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, X. An online Bayesian approach to change-point detection for categorical data. Knowl.-Based Syst. 2020, 196, 105792. [Google Scholar] [CrossRef]
- Kortsch, S.; Primicerio, R.; Beuchel, F.; Renaud, P.E.; Rodrigues, J.; Lønne, O.J.; Gulliksen, B. Climate-driven regime shifts in Arctic marine benthos. Proc. Natl. Acad. Sci. USA 2012, 109, 14052–14057. [Google Scholar] [CrossRef] [Green Version]
- Samhouri, J.F.; Andrews, K.S.; Fay, G.; Harvey, C.J.; Hazen, E.L.; Hennessey, S.M.; Holsman, K.; Hunsicker, M.E.; Large, S.I.; Marshall, K.N.; et al. Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere 2017, 8, e01860. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Lu, H.; Feng, W.; Yu, Q. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century. Sci. Rep. 2019, 9, 20181. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Q.; Zhao, Y.; Li, H.; Zhai, J.; Shang, Y. Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source Region, China. J. Geophys. Res. Atmos. 2015, 120, 6391–6408. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos. 2007, 112, D12110. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Li, J. Spatial variations and long-term trends of potential evaporation in Canada. Sci. Rep. 2020, 10, 22089. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Luo, Y.; Rivera, A. Spatial and seasonal variations in evapotranspiration over Canada’s landmass. Hydrol. Earth Syst. Sci. 2013, 17, 3561–3575. [Google Scholar] [CrossRef] [Green Version]
- Nouri, M.; Bannayan, M. Spatiotemporal changes in aridity index and reference evapotranspiration over semi-arid and humid regions of Iran: Trend, cause, and sensitivity analyses. Theor. Appl. Climatol. 2019, 136, 1073–1084. [Google Scholar] [CrossRef]
- Cabral Júnior, J.B.; Silva, C.M.S.e.; de Almeida, H.A.; Bezerra, B.G.; Spyrides, M.H.C. Detecting linear trend of reference evapotranspiration in irrigated farming areas in Brazil’s semiarid region. Theor. Appl. Climatol. 2019, 138, 215–225. [Google Scholar] [CrossRef]
- Rahman, M.A.; Yunsheng, L.; Sultana, N.; Ongoma, V. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets. Meteorol. Atmos. Phys. 2019, 131, 639–655. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.B.; Guo, Z.; et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38, L06402. [Google Scholar] [CrossRef] [Green Version]
- Hobbins, M.T.; Ramirez, J.A.; Brown, T.C. Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary? Geophys. Res. Lett. 2004, 316, L13503. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.A.; Hobbins, M.T.; Brown, T.C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys. Res. Lett. 2005, 32, L15401. [Google Scholar] [CrossRef] [Green Version]
- Golubev, V.S.; Lawrimore, J.H.; Groisman, P.Y.; Speranskaya, N.A.; Zhuravin, S.A.; Menne, M.J.; Peterson, T.C.; Malone, R.W. Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett. 2001, 28, 2665–2668. [Google Scholar] [CrossRef]
- Roderick, M.L.; Rotstayn, L.D.; Farquhar, G.D.; Hobbins, M.T. On the attribution of changing pan evaporation. Geophys. Res. Lett. 2007, 34, L17403. [Google Scholar] [CrossRef] [Green Version]
- Stephens, C.M.; McVicar, T.R.; Johnson, F.M.; Marshall, L.A. Revisiting Pan Evaporation Trends in Australia a Decade on. Geophys. Res. Lett. 2018, 45, 11164–11172. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Roderick, M.L. Radiation, surface temperature and evaporation over wet surfaces. Q. J. R. Meteorol. Soc. 2019, 145, 1118–1129. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Ahmed, R. Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. Meteorol. Appl. 2020, 27, e1859. [Google Scholar] [CrossRef] [Green Version]
- Alley, R.B. Abrupt climate change. Science 2003, 299, 2005–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severinghaus, J.P.; Sowers, T.; Brook, E.J.; Alley, R.B.; Bender, M.L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 1998, 391, 141–146. [Google Scholar] [CrossRef]
- McIntyre, M.E. Climate tipping points: A personal view. Phys. Today 2023, 76, 44–49. [Google Scholar] [CrossRef]
Parameters | Annual | Summer | Autumn | Winter | Spring |
---|---|---|---|---|---|
Air temperature (°C) | 25.280 | 24.950 | 24.914 | 24.914 | 25.318 |
Precipitation (mm) | 89.662 | 76.840 | 90.784 | 97.847 | 90.843 |
Relative humidity (%) | 70.342 | 66.108 | 69.598 | 73.081 | 72.328 |
Soil moisture (m3m−3) | 0.259 | 0.252 | 0.256 | 0.264 | 0.261 |
Wind speed (ms−1) | 3.812 | 3.444 | 3.326 | 4.560 | 3.595 |
Parameter | AET | PET |
---|---|---|
Air temperature (°C) | −0.58 | 0.79 |
Precipitation (mm) | 0.06 | 0.25 |
Relative humidity (%) | 0.70 | −0.81 |
Soil moisture (m3 m−3) | 0.86 | −0.65 |
Wind speed (ms−1) | −0.40 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nooni, I.K.; Ogou, F.K.; Lu, J.; Nakoty, F.M.; Chaibou, A.A.S.; Habtemicheal, B.A.; Sarpong, L.; Jin, Z. Temporal and Spatial Variations of Potential and Actual Evapotranspiration and the Driving Mechanism over Equatorial Africa Using Satellite and Reanalysis-Based Observation. Remote Sens. 2023, 15, 3201. https://doi.org/10.3390/rs15123201
Nooni IK, Ogou FK, Lu J, Nakoty FM, Chaibou AAS, Habtemicheal BA, Sarpong L, Jin Z. Temporal and Spatial Variations of Potential and Actual Evapotranspiration and the Driving Mechanism over Equatorial Africa Using Satellite and Reanalysis-Based Observation. Remote Sensing. 2023; 15(12):3201. https://doi.org/10.3390/rs15123201
Chicago/Turabian StyleNooni, Isaac Kwesi, Faustin Katchele Ogou, Jiao Lu, Francis Mawuli Nakoty, Abdoul Aziz Saidou Chaibou, Birhanu Asmerom Habtemicheal, Linda Sarpong, and Zhongfang Jin. 2023. "Temporal and Spatial Variations of Potential and Actual Evapotranspiration and the Driving Mechanism over Equatorial Africa Using Satellite and Reanalysis-Based Observation" Remote Sensing 15, no. 12: 3201. https://doi.org/10.3390/rs15123201
APA StyleNooni, I. K., Ogou, F. K., Lu, J., Nakoty, F. M., Chaibou, A. A. S., Habtemicheal, B. A., Sarpong, L., & Jin, Z. (2023). Temporal and Spatial Variations of Potential and Actual Evapotranspiration and the Driving Mechanism over Equatorial Africa Using Satellite and Reanalysis-Based Observation. Remote Sensing, 15(12), 3201. https://doi.org/10.3390/rs15123201