Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.2.1. Field Sampling of Chemical and Physical Soil Parameters
2.2.2. Acquisition and Processing of Multispectral Imagery
2.2.3. Model Development and Statistical Analysis
Variable Extraction
2.2.4. Spatial Analysis
2.2.5. Model Validation and Accuracy Assessment
3. Results
3.1. Descriptive Statistics
3.2. Correlation Analysis between Predictors and Soil Properties
3.3. Analysis of Modeling Results
3.4. Prediction Results and Relative Importance of the Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sona, G.; Passoni, D.; Pinto, L.; Pagliari, D.; Masseroni, D.; Ortuani, B.; Facchi, A. UAV Multispectral Survey to Map Soil and Crop for Precision Farming Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 2016, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Porta, J.; López, M.; Roquero, C. Edafología Para La Agricultura y El Medio Ambiente; Ediciones Mundi-Prensa: Madrid, Spain, 2003. [Google Scholar]
- Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Soppe, R.; Ayars, J.E. Identifying Soil Properties That Influence Cotton Yield Using Soil Sampling Directed. Agron. J. 2003, 95, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Srinet, R.; Nandy, S.; Padalia, H.; Ghosh, S.; Watham, T.; Patel, N.R.; Chauhan, P. Mapping Plant Functional Types in Northwest Himalayan Foothills of India Using Random Forest Algorithm in Google Earth Engine. Int. J. Remote Sens. 2020, 41, 7296–7309. [Google Scholar] [CrossRef]
- Das, B.S.; Sarathjith, M.C.; Santra, P.; Sahoo, R.N.; Srivastava, R.; Routray, A.; Ray, S.S. Hyperspectral Remote Sensing: Opportunities, Status and Challenges for Rapid Soil Assessment in India. Curr. Sci. 2015, 108, 860–868. [Google Scholar]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101986. [Google Scholar] [CrossRef]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; James, R.A.; Condon, A.G.; Bovill, W.D.; Hutchinson, P.; Scarrow, J.; Davy, R.; Furbank, R.T. Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography. Front. Plant Sci. 2016, 7, 1808. [Google Scholar] [CrossRef] [Green Version]
- Prashar, A.; Jones, H.G. Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy 2014, 4, 397–417. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Teklu, M.G.; van Boheeman, K.; Njehia, N.S.; Narabu, T.; Kempenaar, C.; Molendijk, L.P.G.; Schepel, E.; Been, T.H. Unmanned Aerial Vehicle (UAV) for Detection and Prediction of Damage Caused by Potato Cyst Nematode G. Pallida on Selected Potato Cultivars. Remote Sens. 2023, 15, 1429. [Google Scholar] [CrossRef]
- Luo, L.; Chang, Q.; Wang, Q.; Huang, Y. Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on Hyperspectral Measurements. Remote Sens. 2021, 13, 4560. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Shi, L.; Penuelas, J.; Kumar, L.; Nie, C.; Wu, T.; Liu, K.; Wu, W.; Jin, X. High-Resolution Crop Yield and Water Productivity Dataset Generated Using Random Forest and Remote Sensing. Sci. Data 2022, 9, 641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, K.; Chen, H.; He, X.; Zhang, J. Ancillary Information Improves Kriging on Soil Organic Carbon Data for a Typical Karst Peak Cluster Depression Landscape. J. Sci. Food Agric. 2012, 92, 1094–1102. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating Soil Moisture Content under Maize Coverage Using UAV Multimodal Data by Machine Learning Algorithms. J. Hydrol. 2023, 617, 129086. [Google Scholar] [CrossRef]
- Heil, J.; Jörges, C.; Stumpe, B. Fine-Scale Mapping of Soil Organic Matter in Agricultural Soils Using UAVs and Machine Learning. Remote Sens. 2022, 14, 3349. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near Infrared, Mid Infrared or Combined Diffuse Reflectance Spectroscopy for Simultaneous Assessment of Various Soil Properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Francos, N.; Romano, N.; Nasta, P.; Zeng, Y.; Szabó, B.; Manfreda, S.; Ciraolo, G.; Mészáros, J.; Zhuang, R.; Su, B.; et al. Mapping Water Infiltration Rate Using Ground and Uav Hyperspectral Data: A Case Study of Alento, Italy. Remote Sens. 2021, 13, 2606. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L. High Resolution Multi-Spectral Imagery and Learning Machines in Precision Irrigation Water Management; Utah State University: Logan, UT, USA, 2015; p. 153. [Google Scholar]
- Zhou, J.; Xu, Y.; Gu, X.; Chen, T.; Sun, Q.; Zhang, S.; Pan, Y. High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones 2023, 7, 290. [Google Scholar] [CrossRef]
- Shabou, M.; Mougenot, B.; Chabaane, Z.L.; Walter, C.; Boulet, G.; Aissa, N.B.; Zribi, M. Soil Clay Content Mapping Using a Time Series of Landsat TM Data in Semi-Arid Lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [Green Version]
- Keskin, H.; Grunwald, S. Regression Kriging as a Workhorse in the Digital Soil Mapper’s Toolbox. Geoderma 2018, 326, 22–41. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Instituto Geofísico del Perú. Atlas Climático de Precipitación y Temperatura Del Aire En La Cuenca Del Río Mantaro; Fondo Editorial del Consejo Nacional del Ambiente—CONAM, Ed.; Instituto Geofísico del Perú: Lima, Perú, 2005. [Google Scholar]
- Brus, D.J.; Kempen, B.; Heuvelink, G.B.M. Sampling for Validation of Digital Soil Maps. Eur. J. Soil Sci. 2011, 62, 394–407. [Google Scholar] [CrossRef]
- US Environmental Protection Agency Method 9045D Soil and Waste PH. 2004.
- International Standard Organisation (ISO). Soil Quality: Determination of the Specific Electrical Conductivity. 1996. Available online: https://www.iso.org/standard/19243.html (accessed on 10 May 2023).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Norma Oficial Mexicana NOM-021-RECNAT-2000. 2002. Available online: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf (accessed on 10 May 2023).
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1974; Volume 351, p. 309. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Richardson, A.J.; Everitt, J.H. Using Spectral Vegetation Indices to Estimate Rangeland Productivity. Geocarto Int. 1992, 7, 63–69. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue, and Lighting Conditions. Trans. Am. Soc. Agric. Eng. 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Hindman, T.; Meyer, G.E. Machine Vision Detection Parameters for Plant Species Identification. Syst. Eng. 1998, 3543, 327–335. [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A Broad-Band Leaf Chlorophyll Vegetation Index at the Canopy Scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Hewson, R.D.; Cudahy, T.J.; Huntington, J.F. Geologic and Alteration Mapping at Mt Fitton, South Australia, Using ASTER Satellite-Borne Data. Int. Geosci. Remote Sens. Symp. 2001, 2, 724–726. [Google Scholar] [CrossRef]
- Jin, X.; Du, J.; Liu, H.; Wang, Z.; Song, K. Remote Estimation of Soil Organic Matter Content in the Sanjiang Plain, Northest China: The Optimal Band Algorithm versus the GRA-ANN Model. Agric. For. Meteorol. 2016, 218–219, 250–260. [Google Scholar] [CrossRef]
- Schuler, U.; Herrmann, L.; Ingwersen, J.; Erbe, P.; Stahr, K. Comparing Mapping Approaches at Subcatchment Scale in Northern Thailand with Emphasis on the Maximum Likelihood Approach. Catena 2010, 81, 137–171. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil Organic Carbon and Texture Retrieving and Mapping Using Proximal, Airborne and Sentinel-2 Spectral Imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Mayr, A.; Binder, H.; Gefeller, O.; Schmid, M. The Evolution of Boosting Algorithms. Methods Inf. Med. 2014, 53, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilding, L.P.; Drees, L.R. Spatial Variability and Pedology. Dev. Soil Sci. 1983, 11, 83–116. [Google Scholar]
- Reza, S.K.; Nayak, D.C.; Chattopadhyay, T.; Mukhopadhyay, S.; Singh, S.K.; Srinivasan, R. Spatial Distribution of Soil Physical Properties of Alluvial Soils: A Geostatistical Approach. Arch. Agron. Soil Sci. 2016, 62, 972–981. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. Corrplot: Visualization of a Correlation Matrix (Version 0.84) 2017, 18. Available online: https://github.com/taiyun/corrplot (accessed on 5 February 2023).
- R Core Team R: A Language and Environment for Statistical Computing 2021. Available online: https://www.R-project.org (accessed on 5 February 2023).
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.; Msangi, S.; Wood, S.; Kruska, R.; Dixon, J.; Bossio, D.; Steeg, J.; van de Freeman, H.A.; et al. Drivers of Change in Crop–Livestock Systems and Their Potential Impacts on Agro-Ecosystems Services and Human Wellbeing to 2030; ILRI: Nairobi, Kenya, 2012. [Google Scholar]
- van der Merwe, D.; Burchfield, D.R.; Witt, T.D.; Price, K.P.; Sharda, A. Drones in Agriculture, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 162, ISBN 9780128207673. [Google Scholar]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Google’s Cloud-Based Platform for Digital Soil Mapping. Comput. Geosci. 2015, 83, 80–88. [Google Scholar] [CrossRef]
- Ganerød, A.J.; Bakkestuen, V.; Calovi, M.; Fredin, O.; Rød, J.K. Where Are the Outcrops? Automatic Delineation of Bedrock from Sediments Using Deep-Learning Techniques. Appl. Comput. Geosci. 2023, 18, 100119. [Google Scholar] [CrossRef]
- Bennett, M.K.; Younes, N.; Joyce, K. Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth Engine. Drones 2020, 4, 50. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; De Jesus, J.M.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Keshavarzi, A.; del Árbol, M.Á.S.; Kaya, F.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Digital Mapping of Soil Texture Classes for Efficient Land Management in the Piedmont Plain of Iran. Soil Use Manag. 2022, 38, 1705–1735. [Google Scholar] [CrossRef]
- Bogrekci, I.; Lee, W.S. Spectral Soil Signatures and Sensing Phosphorus. Biosyst. Eng. 2005, 92, 527–533. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-Go Variable-Rate Phosphorus Fertilisation Based on a Visible and near-Infrared Soil Sensor. Biosyst. Eng. 2008, 99, 35–46. [Google Scholar] [CrossRef]
- Cavazzi, S.; Corstanje, R.; Mayr, T.; Hannam, J.; Fealy, R. Are Fine Resolution Digital Elevation Models Always the Best Choice in Digital Soil Mapping? Geoderma 2013, 195–196, 111–121. [Google Scholar] [CrossRef]
- Hengl, T.; Macmillan, R.A. Predictive Soil Mapping with R; Lulu.Com: Morrisville, NC, USA, 2019; ISBN 978-0-359-30635-0. [Google Scholar]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital Mapping of Soil Salinization Based on Sentinel-1 and Sentinel-2 Data Combined with Machine Learning Algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of Digital Soil Mapping Approaches with Large Sets of Environmental Covariates. Soil 2018, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Egelberg, J.; Pena, N.; Rivera, R.; Andruk, C. Assessing the Geographic Specificity of PH Prediction by Classification and Regression Trees. PLoS ONE 2021, 16, e0255119. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting Appropriate Machine Learning Methods for Digital Soil Mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.F.A.; Hartemink, A.E. Digital Mapping of Soil Particle-Size Fractions for Nigeria. Soil Sci. Soc. Am. J. 2014, 78, 1953–1966. [Google Scholar] [CrossRef] [Green Version]
- Nocita, M.; Stevens, A.; Noon, C.; Van Wesemael, B. Prediction of Soil Organic Carbon for Different Levels of Soil Moisture Using Vis-NIR Spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Organic Carbon and Nitrogen Associated with Soil Aggregates and Particle Sizes Under Different Land Uses in Tigray, Northern Ethiopia. L. Degrad. Dev. 2015, 26, 690–700. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Yang, H.; Jin, Y.; Zhang, X.; Liu, H. Mapping Regional Soil Organic Matter Based on Sentinel-2a and Modis Imagery Using Machine Learning Algorithms and Google Earth Engine. Remote Sens. 2021, 13, 2934. [Google Scholar] [CrossRef]
- Zhao, Z.; Ashraf, M.I.; Meng, F.R. Model Prediction of Soil Drainage Classes over a Large Area Using a Limited Number of Field Samples: A Case Study in the Province of Nova Scotia, Canada. Can. J. Soil Sci. 2013, 93, 73–78. [Google Scholar] [CrossRef]
Bands | Wavelength (nm) |
---|---|
Normalized Difference Vegetation Index (NDVI) [31] | |
Enhanced Vegetation Index (EVI) [32] | |
Normalized Difference Water Index (NDWI) [33] | |
Soil Adjusted Vegetation Index (SAVI) [32] | L = 0.6 |
Green Normalized Difference Vegetation Index (GNDVI) [34] | |
Difference Vegetation Index (DVI) [35] | |
Optimized Soil Adjusted Vegetation Index (OSAVI) [36] | |
Excess Green index (ExG) [37] | |
Excess Red index (ExR) [38] | |
ExG − ExR [39] | ExGExR |
Normalized Difference Index (NDI) [40] | |
Red-edge Normalized Difference Vegetation Index (NDRE) [41] | |
Chlorophyll vegetation index (CVI) [42] | |
Simple Ratio Red/Blue Iron Oxide (SRI) [43] |
Soil Property | Minimum | Maximum | Mean | Median | SD | CV (%) |
---|---|---|---|---|---|---|
Lime (%) | 27.42 | 58.71 | 38.08 | 37.35 | 6.24 | 16.72 |
Clay (%) | 10.83 | 34.78 | 20.28 | 20.04 | 4.42 | 22.04 |
Sand (%) | 22.58 | 56.46 | 41.64 | 42.30 | 8.46 | 20.01 |
EC (mS/m) | 1.58 | 9.37 | 3.75 | 3.57 | 1.48 | 41.53 |
N (ppm) | 0.07 | 0.23 | 0.12 | 0.11 | 0.02 | 21.06 |
P (ppm) | 7.47 | 57.88 | 29.78 | 30.80 | 11.11 | 36.07 |
K (ppm) | 57.88 | 335.42 | 107.16 | 97.80 | 45.29 | 46.31 |
OM (%) | 1.48 | 4.57 | 2.31 | 2.29 | 0.48 | 21.06 |
Al (ppm) | 0.27 | 9.46 | 4.27 | 4.32 | 2.56 | 59.23 |
pH | 5.25 | 6.88 | 6.09 | 6.06 | 0.35 | 5.83 |
Algorithm | Predictors | Training | Validation | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lime | Clay | Sand | N | P | K | OM | Al | EC | pH | Lime | Clay | Sand | N | P | K | OM | Al | EC | pH | ||
R-square | |||||||||||||||||||||
CART | SB | 0.60 | 0.52 | 0.51 | 0.23 | 0.45 | −0.04 | 0.16 | 0.36 | −0.14 | 0.26 | 0.46 | 0.49 | 0.61 | 0.54 | 0.46 | 0.01 | 0.41 | 0.28 | 0.01 | 0.39 |
SB.DSM | 0.37 | 0.33 | 0.44 | 0.41 | 0.28 | −0.23 | 0.43 | 0.24 | 0.03 | 0.19 | 0.25 | 0.35 | 0.40 | 0.50 | 0.29 | 0.01 | 0.46 | 0.12 | −0.09 | 0.34 | |
SI | 0.92 | 0.88 | 0.89 | 0.82 | 0.83 | 0.55 | 0.81 | 0.91 | 0.89 | 0.90 | 0.89 | 0.86 | 0.76 | 0.84 | 0.89 | 0.72 | 0.84 | 0.88 | 0.86 | 0.87 | |
SI.DSM | 0.90 | 0.72 | 0.84 | 0.66 | 0.87 | 0.81 | 0.66 | 0.91 | 0.79 | 0.80 | 0.89 | 0.85 | 0.82 | 0.85 | 0.83 | 0.88 | 0.85 | 0.89 | 0.72 | 0.92 | |
XGBoost | SB | 0.40 | 0.42 | 0.43 | 0.34 | 0.37 | 0.20 | 0.34 | 0.35 | 0.21 | 0.33 | 0.32 | 0.41 | 0.42 | 0.26 | 0.37 | 0.15 | 0.26 | 0.35 | 0.20 | 0.34 |
SB.DSM | 0.34 | 0.39 | 0.39 | 0.31 | 0.35 | 0.27 | 0.31 | 0.34 | 0.24 | 0.35 | 0.30 | 0.38 | 0.37 | 0.26 | 0.32 | 0.15 | 0.26 | 0.30 | 0.26 | 0.32 | |
SI | 0.54 | 0.53 | 0.54 | 0.41 | 0.53 | 0.39 | 0.41 | 0.54 | 0.53 | 0.50 | 0.50 | 0.51 | 0.50 | 0.30 | 0.52 | 0.29 | 0.30 | 0.52 | 0.53 | 0.50 | |
SI.DSM | 0.51 | 0.53 | 0.49 | 0.40 | 0.51 | 0.40 | 0.40 | 0.50 | 0.48 | 0.48 | 0.48 | 0.51 | 0.46 | 0.31 | 0.50 | 0.34 | 0.31 | 0.51 | 0.47 | 0.49 | |
RF | SB | 0.70 | 0.72 | 0.71 | 0.63 | 0.66 | 0.46 | 0.63 | 0.66 | 0.37 | 0.64 | 0.59 | 0.77 | 0.71 | 0.60 | 0.68 | 0.44 | 0.60 | 0.65 | 0.33 | 0.65 |
SB.DSM | 0.66 | 0.68 | 0.72 | 0.60 | 0.63 | 0.52 | 0.60 | 0.63 | 0.43 | 0.64 | 0.56 | 0.74 | 0.67 | 0.59 | 0.61 | 0.45 | 0.59 | 0.55 | 0.42 | 0.65 | |
SI | 0.89 | 0.89 | 0.89 | 0.82 | 0.89 | 0.71 | 0.82 | 0.89 | 0.87 | 0.89 | 0.88 | 0.91 | 0.89 | 0.78 | 0.89 | 0.64 | 0.78 | 0.88 | 0.86 | 0.90 | |
SI.DSM | 0.85 | 0.85 | 0.87 | 0.75 | 0.83 | 0.71 | 0.75 | 0.83 | 0.76 | 0.84 | 0.82 | 0.87 | 0.84 | 0.74 | 0.82 | 0.65 | 0.74 | 0.81 | 0.77 | 0.86 | |
RMSE | |||||||||||||||||||||
CART | SB | 3.98 | 2.99 | 5.93 | 0.02 | 8.15 | 42.18 | 0.41 | 2.07 | 1.61 | 0.31 | 4.49 | 3.32 | 5.34 | 0.02 | 8.29 | 53.32 | 0.43 | 2.12 | 1.41 | 0.27 |
SB.DSM | 4.98 | 3.54 | 6.32 | 0.02 | 9.37 | 45.84 | 0.34 | 2.25 | 1.49 | 0.32 | 5.28 | 3.74 | 6.60 | 0.02 | 9.52 | 53.79 | 0.41 | 2.35 | 1.48 | 0.28 | |
SI | 1.77 | 1.47 | 2.84 | 0.01 | 4.51 | 27.70 | 0.20 | 0.77 | 0.51 | 0.11 | 2.00 | 1.71 | 4.21 | 0.01 | 3.76 | 28.49 | 0.22 | 0.88 | 0.53 | 0.12 | |
SI.DSM | 2.03 | 2.29 | 3.34 | 0.01 | 3.99 | 18.02 | 0.26 | 0.76 | 0.69 | 0.16 | 2.05 | 1.77 | 3.66 | 0.01 | 4.58 | 18.36 | 0.22 | 0.82 | 0.75 | 0.10 | |
XGBoost | SB | 4.87 | 3.29 | 6.36 | 0.02 | 8.74 | 37.00 | 0.36 | 2.08 | 1.34 | 0.29 | 5.01 | 3.57 | 6.48 | 0.02 | 8.95 | 49.37 | 0.48 | 2.02 | 1.27 | 0.28 |
SB.DSM | 5.11 | 3.38 | 6.58 | 0.02 | 8.87 | 35.40 | 0.37 | 2.10 | 1.31 | 0.29 | 5.09 | 3.64 | 6.77 | 0.02 | 9.28 | 49.39 | 0.48 | 2.09 | 1.21 | 0.28 | |
SI | 4.27 | 2.96 | 5.73 | 0.02 | 7.53 | 32.37 | 0.34 | 1.75 | 1.04 | 0.25 | 4.29 | 3.25 | 6.03 | 0.02 | 7.83 | 45.03 | 0.47 | 1.73 | 0.97 | 0.24 | |
SI.DSM | 4.40 | 2.97 | 6.01 | 0.02 | 7.69 | 32.03 | 0.35 | 1.82 | 1.09 | 0.26 | 4.40 | 3.23 | 6.26 | 0.02 | 7.97 | 43.55 | 0.46 | 1.75 | 1.03 | 0.24 | |
RF | SB | 3.44 | 2.30 | 4.56 | 0.01 | 6.42 | 30.34 | 0.27 | 1.50 | 1.20 | 0.22 | 3.92 | 2.22 | 4.62 | 0.02 | 6.42 | 40.19 | 0.35 | 1.48 | 1.16 | 0.20 |
SB.DSM | 3.66 | 2.44 | 4.44 | 0.01 | 6.69 | 28.55 | 0.28 | 1.57 | 1.14 | 0.21 | 4.06 | 2.38 | 4.87 | 0.02 | 7.01 | 39.94 | 0.36 | 1.69 | 1.08 | 0.20 | |
SI | 2.07 | 1.41 | 2.78 | 0.01 | 3.68 | 22.19 | 0.19 | 0.87 | 0.55 | 0.12 | 2.13 | 1.39 | 2.82 | 0.01 | 3.71 | 32.12 | 0.26 | 0.88 | 0.53 | 0.11 | |
SI.DSM | 2.41 | 1.68 | 3.07 | 0.01 | 4.50 | 22.35 | 0.22 | 1.05 | 0.74 | 0.14 | 2.61 | 1.67 | 3.38 | 0.01 | 4.80 | 31.74 | 0.28 | 1.08 | 0.68 | 0.13 | |
MAE | |||||||||||||||||||||
CART | SB | 1.04 | 1.50 | 0.71 | 17.92 | 1.65 | 0.01 | 0.19 | 3.89 | 0.16 | 2.90 | 1.07 | 1.65 | 0.61 | 23.21 | 2.08 | 0.01 | 0.20 | 4.10 | 0.14 | 2.56 |
SB.DSM | 1.13 | 1.90 | 0.68 | 19.94 | 2.46 | 0.01 | 0.16 | 4.95 | 0.17 | 3.38 | 1.15 | 1.96 | 0.76 | 24.20 | 2.69 | 0.01 | 0.19 | 5.25 | 0.15 | 3.67 | |
SI | 0.18 | 0.39 | 0.13 | 5.36 | 0.40 | 0.001 | 0.05 | 1.30 | 0.03 | 0.73 | 0.21 | 0.47 | 0.15 | 6.18 | 0.40 | 0.00 | 0.04 | 0.88 | 0.03 | 1.09 | |
SI.DSM | 0.21 | 0.87 | 0.22 | 3.51 | 0.46 | 0.001 | 0.09 | 1.15 | 0.05 | 0.89 | 0.20 | 0.70 | 0.22 | 3.32 | 0.44 | 0.00 | 0.08 | 1.18 | 0.03 | 0.90 | |
XGBoost | SB | 1.60 | 2.55 | 0.88 | 21.95 | 3.65 | 0.01 | 0.24 | 6.55 | 0.22 | 5.27 | 1.53 | 2.82 | 0.83 | 26.68 | 3.66 | 0.01 | 0.29 | 6.79 | 0.21 | 5.40 |
SB.DSM | 1.60 | 2.58 | 0.87 | 21.37 | 3.78 | 0.01 | 0.25 | 6.71 | 0.22 | 5.41 | 1.59 | 2.87 | 0.82 | 26.89 | 3.78 | 0.01 | 0.29 | 7.14 | 0.21 | 5.63 | |
SI | 1.34 | 2.21 | 0.70 | 18.79 | 3.19 | 0.01 | 0.22 | 5.65 | 0.19 | 4.67 | 1.31 | 2.49 | 0.65 | 23.14 | 3.19 | 0.01 | 0.27 | 5.92 | 0.18 | 5.01 | |
SI.DSM | 1.37 | 2.23 | 0.72 | 18.69 | 3.22 | 0.01 | 0.22 | 5.85 | 0.19 | 4.83 | 1.32 | 2.47 | 0.67 | 23.36 | 3.20 | 0.01 | 0.27 | 6.14 | 0.18 | 5.08 | |
RF | SB | 1.01 | 1.54 | 0.68 | 16.94 | 2.29 | 0.01 | 0.16 | 4.13 | 0.14 | 2.98 | 0.98 | 1.55 | 0.67 | 21.04 | 2.51 | 0.01 | 0.19 | 4.29 | 0.14 | 2.91 |
SB.DSM | 1.05 | 1.64 | 0.67 | 17.14 | 2.39 | 0.01 | 0.17 | 4.48 | 0.14 | 2.95 | 1.08 | 1.68 | 0.65 | 21.38 | 2.58 | 0.01 | 0.20 | 4.83 | 0.14 | 3.24 | |
SI | 0.53 | 0.86 | 0.31 | 10.06 | 1.20 | 0.00 | 0.10 | 2.15 | 0.07 | 1.58 | 0.53 | 0.89 | 0.29 | 12.84 | 1.17 | 0.01 | 0.12 | 2.26 | 0.07 | 1.60 | |
SI.DSM | 0.69 | 1.10 | 0.42 | 11.92 | 1.56 | 0.01 | 0.13 | 2.90 | 0.10 | 1.84 | 0.70 | 1.14 | 0.40 | 15.40 | 1.67 | 0.01 | 0.15 | 3.15 | 0.09 | 2.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro, S.; Pricope, N.G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; Alejandro, L.; Achallma, L.; Gonzalez, I.; Salazar, W.; et al. Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery. Remote Sens. 2023, 15, 3203. https://doi.org/10.3390/rs15123203
Pizarro S, Pricope NG, Figueroa D, Carbajal C, Quispe M, Vera J, Alejandro L, Achallma L, Gonzalez I, Salazar W, et al. Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery. Remote Sensing. 2023; 15(12):3203. https://doi.org/10.3390/rs15123203
Chicago/Turabian StylePizarro, Samuel, Narcisa G. Pricope, Deyanira Figueroa, Carlos Carbajal, Miriam Quispe, Jesús Vera, Lidiana Alejandro, Lino Achallma, Izamar Gonzalez, Wilian Salazar, and et al. 2023. "Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery" Remote Sensing 15, no. 12: 3203. https://doi.org/10.3390/rs15123203
APA StylePizarro, S., Pricope, N. G., Figueroa, D., Carbajal, C., Quispe, M., Vera, J., Alejandro, L., Achallma, L., Gonzalez, I., Salazar, W., Loayza, H., Cruz, J., & Arbizu, C. I. (2023). Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery. Remote Sensing, 15(12), 3203. https://doi.org/10.3390/rs15123203