Simulation and Error Analysis of Methane Detection Globally Using Spaceborne IPDA Lidar
Abstract
:1. Introduction
2. Methods
2.1. IPDA Lidar Inversion Principle
2.2. Error Calculation for the IPDA Lidar System
2.2.1. Calculation of Random Error
2.2.2. Calculation of Systematic Error
2.3. On-Line and Off-Line Wavelength Optimization
2.4. IPDA Lidar System Parameters and Simulation Routes
3. Materials
3.1. Calculation of Surface Reflectance
3.2. Calculation of the Aerosol Optical Depth
3.3. Calculation of the XCH4 Field
4. Results and Discussion
4.1. Calculation of the Integral Weighting Function
4.2. IPDA System Simulation Results and Estimation of Random Errors
4.3. Analysis of Systematic Errors Using IPDA Lidar
4.3.1. Verification of Model Accuracy
4.3.2. Simulation of Systematic Errors
4.4. Random Errors Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etminan, M.; Myhre, G.; Highwood, E.; Shine, K. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12614–612623. [Google Scholar] [CrossRef]
- Dlugokencky, E.; Houweling, S.; Bruhwiler, L.; Masarie, K.; Lang, P.; Miller, J.; Tans, P. Atmospheric methane levels off: Temporary pause or a new steady-state? Geophys. Res. Lett. 2003, 30, 19. [Google Scholar] [CrossRef] [Green Version]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the rise—Again. Science 2014, 343, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Lan, X.; Nisbet, E.G.; Dlugokencky, E.J.; Michel, S.E. What do we know about the global methane budget? Results from four decades of atmospheric CH4 observations and the way forward. Philos. Trans. R. Soc. A 2021, 379, 20200440. [Google Scholar] [CrossRef]
- Etheridge, D.; Pearman, G.; Fraser, P. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus B 1992, 44, 282–294. [Google Scholar] [CrossRef]
- Petit, J.-R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Spahni, R.; Chappellaz, J.; Stocker, T.F.; Loulergue, L.; Hausammann, G.; Kawamura, K.; Fluckiger, J.; Schwander, J.; Raynaud, D.; Masson-Delmotte, V. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 2005, 310, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Reay, D.S.; Smith, P.; Christensen, T.R.; James, R.H.; Clark, H. Methane and global environmental change. Annu. Rev. Environ. Resour. 2018, 43, 165–192. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Cao, X.; Zhang, X. Development of Atmospheric Methane Observation and Distribution of Global Methane. Remote Sens. Technol. Appl. 2022, 37, 436–450. [Google Scholar]
- Hansen, A.R.; Robinson, G. Water vapor and methane in the upper stratosphere: An examination of some of the Nimbus 7 measurements. J. Geophys. Res. Atmos. 1989, 94, 8474–8484. [Google Scholar] [CrossRef]
- Buchwitz, M.; Schneising, O.; Khlystova, I.; Burrows, J. Retrieval of Carbon Monoxide and Long-lived Greenhouse Gases (CH4, CO2) from SCIAMACHY/ENVISAT Satellite Data; Observing Tropospheric Trace Constituents from Space 50; ACCENT: Brussels, Belgium, 2022. [Google Scholar]
- Buchwitz, M.; De Beek, R.; Noël, S.; Burrows, J.; Bovensmann, H.; Bremer, H.; Bergamaschi, P.; Körner, S.; Heimann, M. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set. Atmos. Chem. Phys. 2005, 5, 3313–3329. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Frankenberg, C.; Meirink, J.F.; Krol, M.; Dentener, F.; Wagner, T.; Platt, U.; Kaplan, J.O.; Körner, S.; Heimann, M. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res. Atmos. 2007, 112, D006235. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Meirink, J.F.; van Weele, M.; Platt, U.; Wagner, T. Assessing methane emissions from global space-borne observations. Science 2005, 308, 1010–1014. [Google Scholar] [CrossRef] [Green Version]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Barnet, C.; Maddy, E.; Sweeney, C.; Liu, X.; Zhou, L.; Goldberg, M. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J. Geophys. Res. Biogeosci. 2008, 113, 2007JG000500. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Kilcoyne, H.; Cikanek, H.; Mehta, A. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos. 2013, 118, 13463–413475. [Google Scholar] [CrossRef]
- Zhou, L.; Warner, J.; Nalli, N.R.; Wei, Z.; Oh, Y.; Bruhwiler, L.; Liu, X.; Divakarla, M.; Pryor, K.; Kalluri, S.; et al. Spatiotemporal Variability of Global Atmospheric Methane Observed from Two Decades of Satellite Hyperspectral Infrared Sounders. Remote Sens. 2023, 15, 2992. [Google Scholar] [CrossRef]
- Saitoh, N.; Touno, M.; Hayashida, S.; Imasu, R.; Shiomi, K.; Yokota, T.; Yoshida, Y.; Machida, T.; Matsueda, H.; Sawa, Y. Comparisons between XCH4 from GOSAT shortwave and thermal infrared spectra and aircraft CH4 measurements over Guam. Sola 2012, 8, 145–149. [Google Scholar] [CrossRef]
- Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.M.; Tran, H.; Kuze, A. Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett. 2011, 38, 14. [Google Scholar] [CrossRef] [Green Version]
- Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Guerlet, S.; Dils, B.; Aben, I.; Armante, R.; Bergamaschi, P.; Blumenstock, T. Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sens. Environ. 2015, 162, 344–362. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Hasekamp, O.; Butz, A.; Galli, A.; Landgraf, J.; Aan de Brugh, J.; Borsdorff, T.; Scheepmaker, R.; Aben, I. The operational methane retrieval algorithm for TROPOMI. Atmos. Meas. Tech. 2016, 9, 5423–5440. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, M.; Kuze, A.; Suto, H. The current status of GOSAT and the concept of GOSAT-2. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVI, Edinburgh, UK, 24–27 September 2012; pp. 21–30. [Google Scholar]
- Ligori, M.; Bradbury, L.; Spina, R.; Zee, R.E.; Germain, S. GHGSat Constellation: The future of Monitoring greenhouse gas emissions. In Proceedings of the 33rd AIAA/USU Conference on Small Satellites, Logan, UT, USA, 6 August 2019. [Google Scholar]
- Fan, B.; Chen, X.; Li, B.; Zhao, Y. Technical innovation of optical remote sensing payloads onboard GF-5 satellite. Infrared Laser Eng. 2017, 46, 0102002. (In Chinese) [Google Scholar] [CrossRef]
- Galeazzi, C.; Sacchetti, A.; Cisbani, A.; Babini, G. The PRISMA program. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. IV-105–IV-108. [Google Scholar]
- Lin, Z.P.C.; Zhe, X.D.X. Recent Progress of Fengyun Meteorology Satellites. Chin. J. Space Sci. 2018, 38, 788–796. [Google Scholar]
- Qu, Z.; Jacob, D.J.; Shen, L.; Lu, X.; Zhang, Y.; Scarpelli, T.R.; Nesser, H.; Sulprizio, M.P.; Maasakkers, J.D.; Bloom, A.A. Global distribution of methane emissions: A comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmos. Chem. Phys. 2021, 21, 14159–14175. [Google Scholar] [CrossRef]
- Lu, X.; Jacob, D.J.; Zhang, Y.; Maasakkers, J.D.; Sulprizio, M.P.; Shen, L.; Qu, Z.; Scarpelli, T.R.; Nesser, H.; Yantosca, R.M. Global methane budget and trend, 2010–2017: Complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations. Atmos. Chem. Phys. 2021, 21, 4637–4657. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith, D.W.; Hase, F. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chen, S.; Liu, Q.; Ke, J.; Wang, N.; Sun, Y.; Wang, S.; Chen, Y.; Li, W.; Tao, Y.; et al. Spaceborne Environmental Detection Lidar and Its Key Techniques. Acta Opt. Sin. 2022, 42, 1701001. (In Chinese) [Google Scholar]
- Ehret, G.; Flamant, P.; Kiemle, C.; Quatrevalet, M.; Amediek, A. MERLIN Performance Simulation of Global CH4. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2011; p. A21D-0114. [Google Scholar]
- Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D. Merlin (methane remote sensing Lidar mission): An overview. EPJ Web Conf. 2016, 116, 26001. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, P.; Pierangelo, C.; Bacour, C.; Marshall, J.; Peylin, P.; Ayar, P.V.; Ehret, G.; Bréon, F.M.; Chevallier, F.; Crevoisier, C. Error budget of the MEthane Remote LIdar mission and its impact on the uncertainties of the global methane budget. J. Geophys. Res. Atmos. 2018, 123, 11766–711785. [Google Scholar] [CrossRef] [Green Version]
- Ehret, G.; Bousquet, P.; Pierangelo, C.; Alpers, M.; Millet, B.; Abshire, J.B.; Bovensmann, H.; Burrows, J.P.; Chevallier, F.; Ciais, P. MERLIN: A French-German space lidar mission dedicated to atmospheric methane. Remote Sens. 2017, 9, 1052. [Google Scholar] [CrossRef] [Green Version]
- Cassé, V.; Chomette, O.; Crevoisier, C.; Gibert, F.; Brožková, R.; El Khatib, R.; Nahan, F. Impact of Meteorological Uncertainties in the Methane Retrieval Ground Segment of the MERLIN Lidar Mission. Atmosphere 2022, 13, 431. [Google Scholar] [CrossRef]
- Ehret, G.; Kiemle, C.; Wirth, M.; Amediek, A.; Fix, A.; Houweling, S. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis. Appl. Phys. B 2008, 90, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Liu, J.; Jiang, J.; Chen, W. Wavelengths optimization to decrease error for a space-borne lidar measuring CO2 concentration. Infrared Laser Eng. 2014, 43, 88–93. (In Chinese) [Google Scholar]
- Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M. Sensitivity studies for a space-based methane lidar mission. Atmos. Meas. Tech. 2011, 4, 2195–2211. [Google Scholar] [CrossRef] [Green Version]
- Kiemle, C.; Kawa, S.R.; Quatrevalet, M.; Browell, E.V. Performance simulations for a spaceborne methane lidar mission. J. Geophys. Res. Atmos. 2014, 119, 4365–4379. [Google Scholar] [CrossRef] [Green Version]
- Caron, J.; Durand, Y.; Bezy, J.-L.; Meynart, R. Performance modeling for A-SCOPE: A space-borne lidar measuring atmospheric CO2. In Proceedings of the Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing V, Berlin, Germany, 31 August–3 September 2009; pp. 105–119. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Olivero, J.J.; Longbothum, R. Empirical fits to the Voigt line width: A brief review. J. Quant. Spectrosc. Radiat. Transf. 1977, 17, 233–236. [Google Scholar] [CrossRef]
- Vermote, E. MOD09CMG MODIS/Terra Surface Reflectance Daily L3 Global 0.05 Deg CMG V006; NASA EOSDIS LP DAAC; NASA: Washington, DC, USA, 2015; Volume 10. [Google Scholar]
- Dumont, M.; Brissaud, O.; Picard, G.; Schmitt, B.; Gallet, J.-C.; Arnaud, Y. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths–comparison with modelling results. Atmos. Chem. Phys. 2010, 10, 2507–2520. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Stamnes, K.; Vaughan, M.; Pelon, J.; Weimer, C.; Wu, D.; Cisewski, M.; Sun, W.; Yang, P.; Lin, B. Sea surface wind speed estimation from space-based lidar measurements. Atmos. Chem. Phys. 2008, 8, 3593–3601. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, R.S.; Spinhirne, J.D.; Palm, S.P. Laser pulse reflectance of the ocean surface from the GLAS satellite lidar. Geophys. Res. Lett. 2005, 32, 22. [Google Scholar] [CrossRef]
- Disney, M.I.; Lewis, P.E.; Bouvet, M.; Prieto-Blanco, A.; Hancock, S. Quantifying surface reflectivity for spaceborne lidar via two independent methods. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3262–3271. [Google Scholar] [CrossRef]
- Ångström, A. On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar]
- Platnick, S.; Ackerman, S.; King, M.; Meyer, K.; Menzel, W.; Holz, R.; Baum, B.; Yang, P. MODIS Atmosphere L2 Cloud Product (06_L2), NASA MODIS Adaptive Processing System; Goddard Space Flight Center: Greenbelt, MD, USA, 2015. [Google Scholar]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, R.; Willis, S.; Morancais, D.; Fabre, F.; Demuth, D. The ADM-Aeolus Mission-the first wind lidar in space. In Proceedings of the 57th International Astronautical Congress, Matera, Italy, 12–16 July 2004; p. B1. 2.08. [Google Scholar]
- Winker, D.; Pelon, J.; Coakley, J., Jr.; Ackerman, S.; Charlson, R.; Colarco, P.; Flamant, P.; Fu, Q.; Hoff, R.; Kittaka, C. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
System Parameter | Value |
---|---|
On-line wavelength | 1645.565 nm |
Off-line wavelength | 1645.831 nm |
Laser pulse energy | 0.05 J |
Pulse repetition frequency | 75 Hz |
Pulse width | 75 ns |
Average output power | 3.75 W |
Telescope diameter | 0.75 m |
Total optical efficiency | 0.65 |
Quantum efficiency | 0.6 |
Orbit altitude | 500 Km |
APD gain factor | 20 |
APD bandwidth | 3 MHz |
APD dark current | 160 fA√Hz |
APD operating temperature | 23 |
Excess noise factor | 4.3 |
Feedback resistance | 1 MΩ |
Surface Type | Condition | Correction Method |
---|---|---|
Land | 0.95 | |
Snow | 0.95 | |
Ocean | ||
Sources of Error | Error Distribution | Relative Error | Relative Error Calculated by Ehret et al. [38] |
---|---|---|---|
Temperature | 0.5 K | 0.0120% | 0.0100% |
Pressure | 0.5 hPa | 0.0360% | 0.0320% |
Relative humidity | 5% | 0.0190% | 0.0230% |
Laser energy emission accuracy | 0.05% | 0.0310% | 0.0250% |
Laser linewidth | 15 MHz | 0.0016% | 0.0010% |
Laser frequency offset | 0.3 MHz | 0.0330% | 0.0280% |
Sources of Error | Error Distribution | Result 1 1 | Result 2 2 |
---|---|---|---|
Temperature | 0.5 K | 0.73 | 1.67 |
Pressure | 0.5 hPa | 1.24 | 1.37 |
Relative humidity | 5% | 0.64 | 0.50 |
Laser energy emission accuracy | 0.1% | 0.84 | 1.77 |
Laser linewidth | 30 MHz | 0.06 | 1.25 |
Laser frequency offset | 0.5 MHz | 0.10 | 0.13 |
Random error | Antarctic average 3 | 4.43 | 11.45 |
Total error | 8.04 | 18.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, M.; Bu, L.; Fan, Z.; Mubarak, A. Simulation and Error Analysis of Methane Detection Globally Using Spaceborne IPDA Lidar. Remote Sens. 2023, 15, 3239. https://doi.org/10.3390/rs15133239
Zhang X, Zhang M, Bu L, Fan Z, Mubarak A. Simulation and Error Analysis of Methane Detection Globally Using Spaceborne IPDA Lidar. Remote Sensing. 2023; 15(13):3239. https://doi.org/10.3390/rs15133239
Chicago/Turabian StyleZhang, Xuanye, Miaomiao Zhang, Lingbing Bu, Zengchang Fan, and Ahmad Mubarak. 2023. "Simulation and Error Analysis of Methane Detection Globally Using Spaceborne IPDA Lidar" Remote Sensing 15, no. 13: 3239. https://doi.org/10.3390/rs15133239
APA StyleZhang, X., Zhang, M., Bu, L., Fan, Z., & Mubarak, A. (2023). Simulation and Error Analysis of Methane Detection Globally Using Spaceborne IPDA Lidar. Remote Sensing, 15(13), 3239. https://doi.org/10.3390/rs15133239