Reconstructing Groundwater Storage Changes in the North China Plain Using a Numerical Model and GRACE Data
Abstract
:1. Introduction
2. Study Area
3. Methods and Data
3.1. Groundwater Storage Model
3.2. Methods for Bridging the Gap between GRACE and GRACE-FO Data
3.3. GRACE Groundwater Storage Drought Index (GGDI)
3.4. Model Evaluation
3.5. Dataset Preparation
3.5.1. Precipitation and Evapotranspiration Data
3.5.2. GRACE-Derived Data
3.5.3. In Situ Data
3.6. Model Development
4. Results
4.1. Hydrogeology Parameter Estimation Using the Groundwater Storage Model
4.2. Downscaled GWSA Changes
4.3. Bridging the Gap between GRACE and GRACE-FO Data
5. Discussion
5.1. GWS Changes in the NCP and Five Administrative Regions
5.2. Spatial Variation in GWS Changes
5.3. Estimation of the GGDI from a Spatiotemporal Perspective
5.4. Limitations and Perspectives
6. Conclusions
- (1)
- The established groundwater storage model using multiple remote-sensing data demonstrated perfect performance after model calibration and verification. The correlation coefficients between the simulated and GRACE-observed GWSA in the calibration period were all greater than 0.85, and 55% of the correlation coefficients in the validation period were greater than 0.50. The uncertainty analysis of the model showed that the combinations of precipitation and actual evapotranspiration data from different sources had no significant impact on the simulated GWSA outputs. The sensitivity of the hydraulic gradient coefficient was the highest, while the sensitivity of the specific yield was slightly lower than that of the hydraulic gradient coefficient.
- (2)
- The downscaled GWSA in the NCP showed a similar and finer spatial distribution when compared with that retrieved by GRACE and GLDAS as well as consistent changes with the in situ observations. Meanwhile, the missing GWSA values during the period of transition between the GRACE and GRACE-FO satellites were bridged. The comparison of the results with previous studies demonstrated favorable performance and was deemed reasonable, affirming the validity and rationality of the model in compensating for the downscaling of data in the empty window period.
- (3)
- The GWSA changes in the five subregions (BJ, TJ, HB, HN, and SD) showed different patterns from 2003 to 2020. From 2003 to 2008, the GWS fluctuated and declined except in HN. From 2008 to 2014, the GWS declined overall. From January 2014 to June 2017, the GWS showed a rapid downward trend. From June 2018 to December 2020, the downward trend of the GWS was significantly slower than that of the previous stage, and in the BJ region, the variation trend of the GWS showed a slow upward trend. This result may be due to the initial success of the STNWTP and control measures for groundwater overexploitation in the NCP.
- (4)
- The patterns of the calculated GGDI in the NCP for the time period from 2003 to 2020 were similar to those of the GWSA. The analysis of the GGDI changes in the five administrative regions (BJ, TJ, HB, HN, and SD) over the period from 2003 to 2020 revealed distinct patterns. From 2003 to 2008, the GGDI exhibited fluctuations and an overall decline, except in HN, where it remained relatively stable. Subsequently, from 2008 to 2014, the GGDI showed a general decline across all regions. During the period from January 2014 to June 2017, the GGDI experienced a rapid and significant downward trend. However, from June 2018 to December 2020, the rate of decline of the GGDI slowed notably compared to the previous stage, except in HN. In particular, in the BJ and TJ regions, the GGDI even exhibited a slight upward trend. Overall, the spatial distribution of the GGDI variations closely resembled that of the GWSA.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The United Nations Educational Scientific and Cultural Organization (UNESCO). The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; UNESCO: Paris, France, 2022; ISBN 978-92-3-100507-7. [Google Scholar]
- Masood, A.; Tariq, M.A.U.R.; Hashmi, M.Z.U.R.; Waseem, M.; Sarwar, M.K.; Ali, W.; Farooq, R.; Almazroui, M.; Ng, A.W.M. An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques. Water 2022, 14, 565. [Google Scholar] [CrossRef]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater Depletion Embedded in International Food Trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, R.S.; Pranjal, P.; Jally, S.; Kumar, B.; Dadhwal, V.K.; Srivastav, S.K.; Kumar, D. Potential Groundwater Recharge in North-Western India vs Spaceborne GRACE Gravity Anomaly Based Monsoonal Groundwater Storage Change for Evaluation of Groundwater Potential and Sustainability. Groundw. Sustain. Dev. 2020, 10, 100307. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-Based Measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- López-Alvis, J.; Carrera-Hernández, J.J.; Levresse, G.; Nieto-Samaniego, Á.F. Assessments of Groundwater Depletion Caused by Excessive Extraction through Groundwater Flow Modeling: The Celaya Aquifer in Central Mexico. Environ. Earth Sci. 2019, 78, 482. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.; Sun, K.; Yang, Z.; Sun, J.; Yin, W. Improved Understanding of Groundwater Storage Changes under the Influence of River Basin Governance in Northwestern China Using GRACE Data. Remote Sens. 2021, 13, 2672. [Google Scholar] [CrossRef]
- Sheard, B.S.; Heinzel, G.; Danzmann, K.; Shaddock, D.A.; Klipstein, W.M.; Folkner, W.M. Intersatellite Laser Ranging Instrument for the GRACE Follow-on Mission. J. Geod. 2012, 86, 1083–1095. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Jiao, J.J. Calibration of a Large-Scale Groundwater Flow Model Using GRACE Data: A Case Study in the Qaidam Basin, China. Hydrogeol. J. 2015, 23, 1305–1317. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling Groundwater Resources in Northern India, from Satellite Gravity Observations. Geophys. Res. Lett. 2009, 36, L18401.1–L18401.5. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.-F.; Li, X.; Zhou, D.; Zhao, W. Subregional-Scale Groundwater Depletion Detected by GRACE for Both Shallow and Deep Aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Gong, H.; Pan, Y.; Zheng, L.; Li, X.; Zhu, L.; Zhang, C.; Huang, Z.; Li, Z.; Wang, H.; Zhou, C. Long-Term Groundwater Storage Changes and Land Subsidence Development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Shum, C.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote Sens. 2018, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Y.P.; Huang, G.H.; Wang, H.; Li, Y.F.; Liu, Y.R.; Shen, Z.Y. A Novel Statistical Downscaling Approach for Analyzing Daily Precipitation and Extremes under the Impact of Climate Change: Application to an Arid Region. J. Hydrol. 2022, 615, 128730. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S.-C. Statistical Downscaling of GRACE-Derived Groundwater Storage Using et Data in the North China Plain. J. Geophys. Res. Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Rahaman, M.; Thakur, B.; Kalra, A.; Li, R.; Maheshwari, P. Estimating High-Resolution Groundwater Storage from GRACE: A Random Forest Approach. Environments 2019, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, W.; Kwon, D.; Milewski, A. Downscaling GRACE TWSA Data into High-Resolution Groundwater Level Anomaly Using Machine Learning-Based Models in a Glacial Aquifer System. Remote Sens. 2019, 11, 824. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Mearns, L.O. Approaches to the Simulation of Regional Climate Change: A Review. Rev. Geophys. 1991, 29, 191. [Google Scholar] [CrossRef]
- Houborg, R.; Rodell, M.; Li, B.; Reichle, R.; Zaitchik, B.F. Drought Indicators Based on Model-Assimilated Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage Observations. Water Resour. Res. 2012, 48, W07525. [Google Scholar] [CrossRef] [Green Version]
- Zaitchik, B.F.; Rodell, M.; Reichle, R.H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. J. Hydrometeorol. 2008, 9, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Hu, L.; Liu, X.; Sun, K. Enhanced Understanding of Groundwater Storage Changes under the Influence of River Basin Governance Using GRACE Data and Downscaling Model. Remote Sens. 2022, 14, 4719. [Google Scholar] [CrossRef]
- Sun, J.; Hu, L.; Chen, F.; Sun, K.; Yu, L.; Liu, X. Downscaling Simulation of Groundwater Storage in the Beijing, Tianjin, and Hebei Regions of China Based on GRACE Data. Remote Sens. 2023, 15, 1490. [Google Scholar] [CrossRef]
- Cao, G.; Zheng, C.; Scanlon, B.R.; Liu, J.; Li, W. Use of Flow Modeling to Assess Sustainability of Groundwater Resources in the North China Plain. Water Resour. Res. 2013, 49, 159–175. [Google Scholar] [CrossRef]
- Shao, J.; Li, L.; Cui, Y.; Zhang, Z. Groundwater Flow Simulation and Its Application in Groundwater Resource Evaluation in the North China Plain, China. Acta Geolo. Sin. Engl. Ed. 2013, 87, 243–253. [Google Scholar] [CrossRef]
- Foster, S.; Garduno, H.; Evans, R.; Olson, D.; Tian, Y.; Zhang, W.; Han, Z. Quaternary Aquifer of the North China Plain-assessing and achieving groundwater resource sustainability. Hydrogeol. J. 2004, 12, 81–93. [Google Scholar] [CrossRef]
- Ministry of Water Resources of China (MWR). China Water Resources Bulletin 2021. Available online: http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html (accessed on 15 June 2022).
- Yao, Y.; Zheng, C.; Andrews, C.; He, X.; Zhang, A.; Liu, J. Integration of Groundwater into China’s South-North Water Transfer Strategy. Sci. Total Environ. 2019, 658, 550–557. [Google Scholar] [CrossRef]
- Zheng, L.; Pan, Y.; Gong, H.; Huang, Z.; Zhang, C. Comparing Groundwater Storage Changes in Two Main Grain Producing Areas in China: Implications for Sustainable Agricultural Water Resources Management. Remote Sens. 2020, 12, 2151. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, C.; Gong, H.; Yeh, P.J.-F.; Shen, Y.; Guo, Y.; Huang, Z.; Li, X. Detection of Human-Induced Evapotranspiration Using GRACE Satellite Observations in the Haihe River Basin of China. Geophys. Res. Lett. 2017, 44, 190–199. [Google Scholar] [CrossRef]
- Li, F.; Kusche, J.; Rietbroek, R.; Wang, Z.; Forootan, E.; Schulze, K.; Lück, C. Comparison of Data-Driven Techniques to Reconstruct (1992–2002) and Predict (2017–2018) GRACE-like Gridded Total Water Storage Changes Using Climate Inputs. Water Resour. Res. 2020, 56, e2019WR026551. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Kusche, J.; Chao, N.; Wang, Z.; Löcher, A. Long-Term (1979-Present) Total Water Storage Anomalies over the Global Land Derived by Reconstructing GRACE Data. Geophys. Res. Lett. 2021, 48, e2021GL093492. [Google Scholar] [CrossRef]
- Mo, S.; Zhong, Y.; Forootan, E.; Shi, X.; Feng, W.; Yin, X.; Wu, J. Hydrological Droughts of 2017–2018 Explained by the Bayesian Reconstruction of GRACE(-FO) Fields. Water Resour. Res. 2022, 58, e2022WR031997. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE Groundwater Drought Index: Evaluation of California Central Valley Groundwater Drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-Based Groundwater Drought Index for Drought Characterization and Teleconnection Factors Analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Long, D.; Yang, Y.; Wada, Y.; Hong, Y.; Liang, W.; Chen, Y.; Yong, B.; Hou, A.; Wei, J.; Chen, L. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China’s Yangtze River Basin. Remote Sens. Environ. 2015, 168, 177–193. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Yu, F. Atlas of Groundwater Sustainable Utilization in North China Plain; China Cartographic Publishing House: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Zhang, C.; Duan, Q.; Yeh, P.J.-F.; Pan, Y.; Gong, H.; Gong, W.; Di, Z.; Lei, X.; Liao, W.; Huang, Z.; et al. The Effectiveness of the South-to-North Water Diversion Middle Route Project on Water Delivery and Groundwater Recovery in North China Plain. Water Resour. Res. 2020, 56, e2019WR026759. [Google Scholar] [CrossRef]
- Liu, R.; Zhong, B.; Li, X.; Zheng, K.; Liang, H.; Cao, J.; Yan, X.; Lyu, H. Analysis of Groundwater Changes (2003–2020) in the North China Plain Using Geodetic Measurements. J. Hydrol. Reg. Stud. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, H.; Chen, B.; Zhang, Q.; Li, Z. Long-Term and Seasonal Variation in Groundwater Storage in the North China Plain Based on GRACE. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102560. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, B.; Yao, Y.; Wu, W.; Meng, G.; Chen, Q. Geodetic and Hydrological Measurements Reveal the Recent Acceleration of Groundwater Depletion in North China Plain. J. Hydrol. 2019, 575, 1065–1072. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Ho, C.-H.; Piao, S.; Kim, J.; Ciais, P.; Lee, Y.-B.; Jhun, J.-G.; Park, S.K. Effects of Double Cropping on Summer Climate of the North China Plain and Neighbouring Regions. Nat. Clim. Chang. 2014, 4, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ren, L.; Feng, W. Comparison of the Shallow Groundwater Storage Change Estimated by a Distributed Hydrological Model and GRACE Satellite Gravimetry in a Well-Irrigated Plain of the Haihe River Basin, China. J. Hydrol. 2022, 610, 127799. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, J.; Guo, S.; Yin, W.; Rao, W.; Chao, N.; Abhishek. Using GRACE to Detect Groundwater Variation in North China Plain after South–North Water Diversion. Groundwater 2022, 61, 402–420. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, M.; Wei, M.; Luo, Z. Quantitative Assessment of Shallow Groundwater Sustainability in North China Plain. Remote Sens. 2023, 15, 474. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Huang, M.; Leung, L.R. A Comparative Analysis of the Impacts of Climate Change and Irrigation on Land Surface and Subsurface Hydrology in the North China Plain. Reg. Environ. Chang. 2014, 15, 251–263. [Google Scholar] [CrossRef]
- Zhao, A.; Xiang, K.; Zhang, A.; Zhang, X. Spatial-Temporal Evolution of Meteorological and Groundwater Droughts and Their Relationship in the North China Plain. J. Hydrol. 2022, 610, 127903. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Zhang, X.; Druce, D.; Kittel, C.M.M.; Tøttrup, C.; Bauer-Gottwein, P. Impacts of Water Resources Management on Land Water Storage in the North China Plain: Insights from Multi-Mission Earth Observations. J. Hydrol. 2021, 603, 126933. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, M. Assessment of the Economic Impact of South-to-North Water Diversion Project on Industrial Sectors in Beijing. J. Econ. Struct. 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Yang, W.; Scanlon, B.R.; Zhao, J.; Liu, D.; Burek, P.; Pan, Y.; You, L.; Wada, Y. South-to-North Water Diversion Stabilizing Beijing’s Groundwater Levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef]
Grade | Classification | GGDI |
---|---|---|
I | No drought | −0.5 < GGDI |
II | Mild drought | −1.0 < GGDI ≤ −0.5 |
III | Moderate drought | −1.5 < GGDI ≤ −1.0 |
IV | Severe drought | −2.0 < GGDI ≤ −1.5 |
V | Extreme drought | GGDI ≤ −2.0 |
Data Category | Data Source | Spatial Resolution | Time Scale | Time Span |
---|---|---|---|---|
TWS | GRACE | 0.5° | Monthly | 2003–2020 |
Li et al. [33] | 0.5° | Monthly | January 2003–June 2020 | |
Mo et al. [34] | 1° | Monthly | 2003–2020 | |
GLDAS CLSM | 1° | Monthly | 2003–2020 | |
SM | GLDAS V2.1 | 1° | Monthly | 2003–2020 |
SWE | GLDAS V2.1 | 1° | Monthly | 2003–2020 |
Precipitation | TRMM 3B43 | 0.25° | Monthly | 2003–2019 |
ERA5 | 0.25° | Monthly | 2003–2019 | |
PENG | 0.05° | Monthly | 2003–2020 | |
AET | MOD16 | 0.05° | Monthly | 2003–2020 |
ERA5 | 0.25° | Monthly | 2003–2019 | |
GLEAM v3.5a | 0.25° | Monthly | 2003–2019 | |
GWL | In situ observation | − | Monthly, Daily | 2005–2014 2018–2019 |
Cell ID | Calibration Period | Validation Period | Cell ID | Calibration Period | Validation Period | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | RMSE (cm EWH) | NSE | CC | RMSE (cm EWH) | NSE | CC | RMSE (cm EWH) | NSE | CC | RMSE (cm EWH) | NSE | ||
G14 | 0.95 | 4.48 | 0.65 | 0.85 | 6.20 | 0.10 | G41 | 0.90 | 4.04 | 0.78 | 0.43 | 4.48 | 0.87 |
G22 | 0.95 | 3.97 | 0.76 | 0.64 | 4.69 | 0.60 | G42 | 0.88 | 4.85 | 0.76 | 0.30 | 4.70 | 0.85 |
G23 | 0.89 | 6.37 | 0.64 | 0.47 | 7.23 | 0.42 | G43 | 0.82 | 5.40 | 0.64 | 0.40 | 8.51 | 0.44 |
G24 | 0.88 | 6.09 | 0.64 | 0.20 | 7.27 | 0.42 | G48 | 0.96 | 5.88 | 0.82 | 0.51 | 8.16 | 0.70 |
G25 | 0.75 | 8.78 | 0.23 | 0.04 | 13.78 | −1.75 | G49 | 0.87 | 4.66 | 0.70 | 0.52 | 6.37 | 0.81 |
G30 | 0.93 | 3.28 | 0.84 | 0.72 | 2.76 | 0.89 | G50 | 0.90 | 3.75 | 0.81 | 0.41 | 4.59 | 0.89 |
G31 | 0.90 | 3.40 | 0.79 | 0.49 | 3.57 | 0.82 | G56 | 0.97 | 4.60 | 0.89 | 0.80 | 9.35 | 0.69 |
G32 | 0.90 | 5.90 | 0.62 | 0.31 | 11.37 | −0.10 | G57 | 0.93 | 4.99 | 0.82 | 0.55 | 0.12 | 0.65 |
G33 | 0.85 | 4.24 | 0.55 | 0.32 | 8.19 | 0.38 | G58 | 0.85 | 4.35 | 0.70 | 0.73 | 4.94 | 0.87 |
G39 | 0.96 | 4.25 | 0.85 | 0.42 | 8.61 | 0.52 | G65 | 0.94 | 2.73 | 0.90 | 0.86 | 4.39 | 0.91 |
G40 | 0.90 | 3.38 | 0.73 | 0.64 | 3.63 | 0.89 | G66 | 0.90 | 3.22 | 0.84 | 0.57 | 5.07 | 0.88 |
Well Number | CC | Well Number | CC |
---|---|---|---|
W7 | 0.51 | W1 | 0.52 |
W8 | 0.65 | W2 | 0.70 |
W9 | 0.62 | W3 | 0.58 |
W10 | 0.72 | W4 | 0.69 |
W11 | 0.67 | W5 | 0.60 |
W12 | 0.66 | W6 | 0.58 |
Research Scholars | Research Area | Research Period | Changes in GWSA in Previous Research | Changes in GWSA in This Study |
---|---|---|---|---|
Feng et al., 2013 [5] | NCP (370,000 km2) | 2003–2010 | −2.2 ± 0.3 cm/yr | −0.91 cm/yr |
Feng et al., 2018 [15] | NCP (320,000 km2) | 2003–2014 | −7.3 ± 1.1 km3/yr | −1.40 cm/yr |
Liu et al., 2022 [42] | NCP | 2003–2014 | −1.66 ± 0.17 cm/yr | −1.40 cm/yr |
2005–2016 | −2.21 ± 0.15 cm/yr | −1.91 cm/yr | ||
2015–2020 | −2.76 ± 0.55 cm/yr | −2.26 cm/yr | ||
2003–2020 | −2.18 ± 0.11 cm/yr | −1.89 cm/yr | ||
Gong et al., 2018 [14] | NCP | 2003–2015 | −17.7 ± 1.1 mm/yr | −15.2 mm/yr |
HB | 2005–2013 | −14.7 ± 1.1 mm/yr | −15.9 mm/yr | |
TJ | 2005–2013 | −20.2 ± 0.2 cm/yr | −18.6 mm/yr | |
Xu et al., 2021 [43] | NCP | 2003–2017 | −19.96 ± 3.6 cm/yr | −17.15 mm/yr |
Zhao et al., 2019 [44] | NCP | 2004–mid–2016 | −1.7 ± 0.1 cm/yr | −1.76 cm/yr |
mid–2013−mid–2016 | −3.8 ± 0.1 cm/yr | −2.47 cm/yr | ||
Zheng et al., 2020 [30] | NCP | 2003–2016 | −17.2 ± 0.8 mm/yr | −16.1 mm/yr |
Regions | Slopes of GWSA in Different Periods (cm/Month) | |||
---|---|---|---|---|
January 2003–December 2008 | January 2009–December 2014 | January 2015–December 2017 | January 2018–December 2020 | |
NCP | −0.039 | −0.150 | −0.216 | −0.130 |
BJ | −0.028 | −0.087 | −0.234 | 0.095 |
TJ | −0.068 | −0.141 | −0.313 | 0.048 |
HB | −0.043 | −0.131 | −0.199 | −0.098 |
HN | −0.007 | −0.224 | −0.162 | −0.363 |
SD | −0.040 | −0.175 | −0.245 | −0.154 |
Regions | Slopes of GGDI in Different Periods | |||
---|---|---|---|---|
January 2003–December 2008 | January 2009–December 2014 | January 2015–December 2017 | January 2018–December 2020 | |
NCP | −0.0031 | −0.0147 | −0.0206 | −0.0117 |
BJ | −0.0038 | −0.0122 | −0.0301 | 0.0114 |
TJ | −0.0054 | −0.0117 | −0.0226 | 0.003 |
HB | −0.004 | −0.0137 | −0.0191 | −0.0113 |
HN | 0.001 | −0.0192 | −0.0143 | −0.0274 |
SD | −0.0026 | −0.015 | −0.0197 | −0.0113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hu, L.; Sun, J.; Wang, D. Reconstructing Groundwater Storage Changes in the North China Plain Using a Numerical Model and GRACE Data. Remote Sens. 2023, 15, 3264. https://doi.org/10.3390/rs15133264
Zhang J, Hu L, Sun J, Wang D. Reconstructing Groundwater Storage Changes in the North China Plain Using a Numerical Model and GRACE Data. Remote Sensing. 2023; 15(13):3264. https://doi.org/10.3390/rs15133264
Chicago/Turabian StyleZhang, Junchao, Litang Hu, Jianchong Sun, and Dao Wang. 2023. "Reconstructing Groundwater Storage Changes in the North China Plain Using a Numerical Model and GRACE Data" Remote Sensing 15, no. 13: 3264. https://doi.org/10.3390/rs15133264
APA StyleZhang, J., Hu, L., Sun, J., & Wang, D. (2023). Reconstructing Groundwater Storage Changes in the North China Plain Using a Numerical Model and GRACE Data. Remote Sensing, 15(13), 3264. https://doi.org/10.3390/rs15133264