Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Thermokarst Lake Inventory
2.2.2. Conditioning Factors
2.2.3. Multicollinearity Test
2.3. Modelling Methods
2.3.1. Frequency Ratio
2.3.2. Machine Learning Model
2.3.3. Model Performance
2.3.4. Uncertainty Assessment
3. Results
3.1. Relationship between Thermokarst Lakes and Conditioning Factors
3.2. Performance of Model Prediction
3.3. Relative Importance of Conditioning Factors
3.4. Generation of TLSMs
3.5. Uncertainty Analysis of TLSMs
3.6. TLSMs under the Future Scenarios
3.7. Potential Risk Analysis of the QTEC
4. Discussion
4.1. Comparison with Existing Studies
4.2. Environmental Control Factors of Thermokarst Lakes
4.3. Uncertainties and Future Works
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qiu, J. China: The Third Pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Cheng, G.; Che, J.; Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.; Jin, H.; Obu, J.; et al. New High-Resolution Estimates of the Permafrost Thermal State and Hydrothermal Conditions over the Northern Hemisphere. Earth Syst. Sci. Data 2022, 14, 865–884. [Google Scholar] [CrossRef]
- Wang, X.; Ran, Y.; Pang, G.; Chen, D.; Su, B.; Chen, R.; Li, X.; Chen, H.W.; Yang, M.; Gou, X.; et al. Contrasting Characteristics, Changes, and Linkages of Permafrost between the Arctic and the Third Pole. Earth-Sci. Rev. 2022, 230, 104042. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The Imbalance of the Asian Water Tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Luo, D.; Wu, Q.; Jin, H.; Marchenko, S.S.; Lü, L.; Gao, S. Recent Changes in the Active Layer Thickness across the Northern Hemisphere. Environ. Earth Sci. 2016, 75, 555. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G. Climate Warming over the Past Half Century Has Led to Thermal Degradation of Permafrost on the Qinghai–Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, T. Recent Permafrost Warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2008, 113, D13108. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Hu, N.; Yin, Z.; Zhao, L.; Cheng, G.; Mu, C. Qinghai-Tibet Plateau Permafrost at Risk in the Late 21st Century. Earths Future 2022, 10, e2022EF002652. [Google Scholar] [CrossRef]
- Farquharson, L.M.; Mann, D.H.; Grosse, G.; Jones, B.M.; Romanovsky, V.E. Spatial Distribution of Thermokarst Terrain in Arctic Alaska. Geomorphology 2016, 273, 116–133. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Jiang, L.; Guo, R.; Huang, R.; Zhou, Z.; Niu, F.; Jiao, Z. Interaction of Permafrost Degradation and Thermokarst Lakes in the Qinghai–Tibet Plateau. Geomorphology 2023, 425, 108582. [Google Scholar] [CrossRef]
- Hjort, J.; Streletskiy, D.; Doré, G.; Wu, Q.; Bjella, K.; Luoto, M. Impacts of Permafrost Degradation on Infrastructure. Nat. Rev. Earth Environ. 2022, 3, 24–38. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Farquharson, L.M.; Roy-Léveillée, P.; Veremeeva, A.; Kanevskiy, M.Z.; Gaglioti, B.V.; Breen, A.L.; Parsekian, A.D.; Ulrich, M.; et al. Lake and Drained Lake Basin Systems in Lowland Permafrost Regions. Nat. Rev. Earth Environ. 2022, 3, 85–98. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [Green Version]
- Walter, K.M.; Zimov, S.A.; Chanton, J.P.; Verbyla, D.; Chapin, F.S. Methane Bubbling from Siberian Thaw Lakes as a Positive Feedback to Climate Warming. Nature 2006, 443, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Grosse, G.; Jones, B.M.; Arp, C.D. Thermokarst Lakes, Drainage, and Drained Basins. In Treatise on Geomorphology; Shroder, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 8, pp. 325–353. [Google Scholar]
- Lin, Z.; Luo, J.; Niu, F. Development of a Thermokarst Lake and Its Thermal Effects on Permafrost over Nearly 10 Yr in the Beiluhe Basin, Qinghai-Tibet Plateau. Geosphere 2016, 12, 632–643. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.J.; Niu, F.J.; Fang, J.H.; Luo, J.; Yin, G.A. Interannual Variations in the Hydrothermal Regime around a Thermokarst Lake in Beiluhe, Qinghai-Tibet Plateau. Geomorphology 2017, 276, 16–26. [Google Scholar] [CrossRef]
- Peng, E.-X.; Sheng, Y.; Hu, X.-Y.; Wu, J.-C.; Cao, W. Thermal Effect of Thermokarst Lake on the Permafrost under Embankment. Adv. Clim. Chang. Res. 2021, 12, 76–82. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Romanovsky, V.E.; Boike, J. Remote Sensing Quantifies Widespread Abundance of Permafrost Region Disturbances across the Arctic and Subarctic. Nat. Commun. 2018, 9, 5423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, F.; Lin, Z.; Liu, H.; Lu, J. Characteristics of Thermokarst Lakes and Their Influence on Permafrost in Qinghai–Tibet Plateau. Geomorphology 2011, 132, 222–233. [Google Scholar] [CrossRef]
- Wei, Z.; Du, Z.; Wang, L.; Lin, J.; Feng, Y.; Xu, Q.; Xiao, C. Sentinel-Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai-Tibet Plateau. Earth Space Sci. 2021, 8, e2021EA001950. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G.; Gao, Z. Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the Last 50 Years. CATENA 2022, 217, 106497. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Thermokarst Lake Changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China. Sci. Bull. 2015, 60, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Șerban, R.-D.; Jin, H.; Șerban, M.; Luo, D. Shrinking Thermokarst Lakes and Ponds on the Northeastern Qinghai-Tibet Plateau over the Past Three Decades. Permafr. Periglac. Process. 2021, 32, 601–617. [Google Scholar] [CrossRef]
- Ding, Y.; Mu, C.; Wu, T.; Hu, G.; Zou, D.; Wang, D.; Li, W.; Wu, X. Increasing Cryospheric Hazards in a Warming Climate. Earth-Sci. Rev. 2021, 213, 103500. [Google Scholar] [CrossRef]
- Yin, G.; Luo, J.; Niu, F.; Zhou, F.; Meng, X.; Lin, Z.; Liu, M. Spatial Analyses and Susceptibility Modeling of Thermokarst Lakes in Permafrost Landscapes along the Qinghai–Tibet Engineering Corridor. Remote Sens. 2021, 13, 1974. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Pei, W.; Melnikov, A.; Zhang, Z.; Li, G. Risk Evaluation of Thaw Settlement Using Machine Learning Models for the Wudaoliang-Tuotuohe Region, Qinghai-Tibet Plateau. CATENA 2023, 220, 106700. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Konstantinov, P.; Pei, W.; Tregubov, O.; Li, G. Permafrost Degradation Induced Thaw Settlement Susceptibility Research and Potential Risk Analysis in the Qinghai-Tibet Plateau. CATENA 2022, 214, 106239. [Google Scholar] [CrossRef]
- Niu, F.; Lin, Z.; Lu, J.; Luo, J.; Wang, H. Assessment of Terrain Susceptibility to Thermokarst Lake Development along the Qinghai–Tibet Engineering Corridor, China. Environ. Earth Sci. 2015, 73, 5631–5642. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, D.K.; Park, C.; Ahn, Y.; Kil, S.-H.; Sung, S.; Biging, G.S. Estimating Landslide Susceptibility Areas Considering the Uncertainty Inherent in Modeling Methods. Stoch. Environ. Res. Risk Assess. 2018, 32, 2987–3019. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine Learning Ensemble Modelling as a Tool to Improve Landslide Susceptibility Mapping Reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Lara, M.J.; Chen, Y.; Jones, B.M. Recent Warming Reverses Forty-Year Decline in Catastrophic Lake Drainage and Hastens Gradual Lake Drainage across Northern Alaska. Environ. Res. Lett. 2021, 16, 124019. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.; Arp, C.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ran, Y.; Wan, W.; Luo, W.; Chen, W.; Xu, F. 100 Years of Lake Evolution over the Qinghai-Tibet Plateau. Earth Syst. Sci. Data 2021, 13, 3951–3966. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau’s Lakes to Climate Change: Trends, Patterns, and Mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Brown, J.; Ferrians, O.J., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; Circum-Pacific Map. 1997. Available online: http://pubs.er.usgs.gov/publication/cp45 (accessed on 18 June 2023).
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000–2016 at 1 Km2 Scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Mu, C.; Abbott, B.W.; Norris, A.J.; Mu, M.; Fan, C.; Chen, X.; Jia, L.; Yang, R.; Zhang, T.; Wang, K.; et al. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Sci. Rev. 2020, 211, 103433. [Google Scholar] [CrossRef]
- Polishchuk, Y.M.; Bogdanov, A.N.; Muratov, I.N.; Polishchuk, V.Y.; Lim, A.; Manasypov, R.M.; Shirokova, L.S.; Pokrovsky, O.S. Minor Contribution of Small Thaw Ponds to the Pools of Carbon and Methane in the Inland Waters of the Permafrost-Affected Part of the Western Siberian Lowland. Environ. Res. Lett. 2018, 13, 045002. [Google Scholar] [CrossRef] [Green Version]
- Șerban, R.-D.; Jin, H.; Șerban, M.; Luo, D.; Wang, Q.; Jin, X.; Ma, Q. Mapping Thermokarst Lakes and Ponds across Permafrost Landscapes in the Headwater Area of Yellow River on Northeastern Qinghai-Tibet Plateau. Int. J. Remote Sens. 2020, 41, 7042–7067. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on Landslide Susceptibility Mapping Using Support Vector Machines. CATENA 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billet, M.F.; Canário, J.; Cory, R.M.; et al. Reviews and Syntheses: Effects of Permafrost Thaw on Arctic Aquatic Ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, R.; Zinko, U.; Seibert, J. On the Calculation of the Topographic Wetness Index: Evaluation of Different Methods Based on Field Observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.; Chen, H.; Bian, Z.; Liu, Z. Evaluation of Integrating Topographic Wetness Index with Backscattering Coefficient of TerraSAR-X Image for Soil Moisture Estimation in a Mountainous Region. Ecol. Indic. 2016, 61, 624–633. [Google Scholar] [CrossRef]
- Wang, P.; de Jager, J.; Nauta, A.; van Huissteden, J.; Trofim, M.C.; Limpens, J. Exploring Near-Surface Ground Ice Distribution in Patterned-Ground Tundra: Correlations with Topography, Soil and Vegetation. Plant Soil 2019, 444, 251–265. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Karjalainen, O.; Luoto, M.; Aalto, J.; Hjort, J. New Insights into the Environmental Factors Controlling the Ground Thermal Regime across the Northern Hemisphere: A Comparison between Permafrost and Non-Permafrost Areas. Cryosphere 2019, 13, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Niu, F.; Yu, Q.; Wang, D.; Feng, W.; Zheng, J. The Role of Rainfall in the Thermal-Moisture Dynamics of the Active Layer at Beiluhe of Qinghai-Tibetan Plateau. Environ. Earth Sci. 2014, 71, 1195–1204. [Google Scholar] [CrossRef]
- Guodong, C. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Reg. Sci. Technol. 1983, 8, 57–66. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-Resolution and Bias-Corrected CMIP5 Projections for Climate Change Impact Assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, W. GIS-Based Landslide Susceptibility Assessment Using Optimized Hybrid Machine Learning Methods. CATENA 2021, 196, 104833. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Sadhasivam, N.; Kariminejad, N.; Collins, A.L. Gully Erosion Spatial Modelling: Role of Machine Learning Algorithms in Selection of the Best Controlling Factors and Modelling Process. Geosci. Front. 2020, 11, 2207–2219. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Siva Subramanian, S.; Xu, Q.; Huang, R. Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments. Geophys. Res. Lett. 2021, 48, e2020GL090509. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- LaValley, M.P. Logistic Regression. Circulation 2008, 117, 2395–2399. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Chen, T.; Dou, J.; Plaza, A. A Hybrid Ensemble-Based Deep-Learning Framework for Landslide Susceptibility Mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102713. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Xu, X.-M.; Wu, Q.-B. Impact of Climate Change on Allowable Bearing Capacity on the Qinghai-Tibetan Plateau. Adv. Clim. Chang. Res. 2019, 10, 99–108. [Google Scholar] [CrossRef]
- Niu, F.; Yin, G.; Luo, J.; Lin, Z.; Liu, M. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS. Remote Sens. 2018, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Niu, F.; Luo, J. Distribution Data of Freezing-Thawing Hazards in Qinghai Tibet Engineering Corridor (2019–2020); A Big Earth Data Platform for Three Poles. 2022. Available online: https://poles.tpdc.ac.cn/en/data/8df419f2-b88c-4a39-a13b-3c7a82e8d367/?q=Distribution%20Data%20of%20Freezing-thawing%20Hazards%20in%20Qinghai%20Tibet%20Engineering%20Corridor%20(2019-2020) (accessed on 18 June 2023).
- Bouchard, F.; MacDonald, L.A.; Turner, K.W.; Thienpont, J.R.; Medeiros, A.S.; Biskaborn, B.K.; Korosi, J.; Hall, R.I.; Pienitz, R.; Wolfe, B.B. Paleolimnology of Thermokarst Lakes: A Window into Permafrost Landscape Evolution. Arct. Sci. 2017, 3, 91–117. [Google Scholar] [CrossRef] [Green Version]
- Thi Ngo, P.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of Deep Learning Algorithms for National Scale Landslide Susceptibility Mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar] [CrossRef]
- Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophys. Res. Lett. 2018, 45, 4889–4898. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Yang, X.; Xu, C.; Wei, L.; Zeng, X. Comparative Study of Convolutional Neural Network and Conventional Machine Learning Methods for Landslide Susceptibility Mapping. Remote Sens. 2022, 14, 321. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A High-Accuracy Map of Global Terrain Elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, Empirical Evaluation and Accuracy Assessment of Global High-Resolution Geomorphometric Layers. Sci. Data 2020, 7, 162. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. SOIL 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
Conditioning Factors | Collinearity Statistics | |
---|---|---|
Tolerance | VIF | |
Slope | 0.534 | 1.874 |
Aspect | 0.998 | 1.002 |
MAGT | 0.444 | 2.254 |
ALT | 0.424 | 2.359 |
TWI | 0.549 | 1.823 |
NDVI | 0.659 | 1.518 |
Rainfall | 0.397 | 2.519 |
FSC | 0.539 | 1.855 |
Conditioning Factors | Classes |
---|---|
Slope (°) | <2.94; 2.94–6.46; 6.46–10.76; 10.76–15.85; 15.85–22.50; >22.50 |
Aspect (°) | N(0–22.5 and 337.5–360); NE (22.5–67.5); E (67.5–112.5); SE (112.5–157.5); S (157.5–202.5); SW (202.5–247.5); W (247.5–292.5); NW (292.5–337.5) |
MAGT (°C) | <(−2.5); (−2.5)–(−2); (−2)–(−1.5); (−1.5)–(−1); (−1)–(−0.5); >(−0.5) |
ALT (cm) | <122.46; 122.46–173.55; 173.55–224.63; 224.63–275.71; 275.71–326.80; >326.80 |
TWI | <(−2.59); (−2.59)–(−1.55); (−1.55)–(−0.51); (−0.51)–0.58; 0.58–1.84; >1.84 |
NDVI | <(−0.12); (−0.12)–(−0.02); (−0.02)–0.07; 0.07–0.16; 0.16–0.26; >0.26 |
Rainfall (mm) | <100; 100–200; 200–300; 300–400; 400–500; >500 |
FSC (%) | <40; 40–50; 50–60; 60–70; 70–80; >80 |
Models | AUC | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|
LR | 0.860 | 0.787 | 0.879 | 0.743 | 0.805 |
RF | 0.898 | 0.821 | 0.846 | 0.805 | 0.825 |
EXT | 0.900 | 0.823 | 0.862 | 0.799 | 0.829 |
Classes | Area Covered (%) | Thermokarst Lake Covered (%) | Thermokarst Lake Density (/100 km2) |
---|---|---|---|
Very Low | 45.74 | 1.72 | 0.51 |
Low | 13.37 | 2.54 | 2.59 |
Moderate | 14.53 | 8.25 | 7.75 |
High | 20.00 | 43.15 | 29.46 |
Very High | 6.36 | 44.34 | 95.20 |
Classes | Area Covered (%) | Thermokarst Lake Covered (%) | Thermokarst Lake Density (/100 km2) |
---|---|---|---|
Very Low | 52.31 | 1.35 | 0.35 |
Low | 17.25 | 3.34 | 2.65 |
Moderate | 11.18 | 6.99 | 8.54 |
High | 11.05 | 19.81 | 24.47 |
Very High | 8.21 | 65.50 | 113.95 |
Classes | Area Covered (%) | Thermokarst Lake Covered (%) | Thermokarst Lake Density (/100 km2) |
---|---|---|---|
Very Low | 49.07 | 0.94 | 0.26 |
Low | 18.24 | 2.81 | 2.10 |
Moderate | 13.02 | 6.63 | 6.96 |
High | 12.56 | 21.45 | 23.31 |
Very High | 7.11 | 68.17 | 130.94 |
Classes | Area Covered (%) | Thermokarst Lake Covered (%) |
---|---|---|
Very Low | 46.39 | 96.78 |
Low | 23.02 | 2.39 |
Medium | 16.65 | 0.65 |
High | 10.01 | 0.17 |
Very High | 3.93 | 0.01 |
Classes | Area Covered (%) | Thermokarst Lake Covered (%) |
---|---|---|
Very Low | 57.17 | 98.50 |
Low | 30.34 | 1.46 |
Medium | 9.79 | 0.04 |
High | 2.20 | 0 |
Very High | 0.50 | 0 |
Classes | Area Covered (%) | Thermokarst Lake Covered (%) |
---|---|---|
Very Low | 65.41 | 98.92 |
Low | 24.52 | 1.07 |
Medium | 7.02 | 0.01 |
High | 2.44 | 0 |
Very High | 0.61 | 0 |
Classes | Present (km2) | RCP 2.6 (km2) | RCP 4.5 (km2) | RCP 8.5 (km2) |
---|---|---|---|---|
Very Low | 489,440 | 272,570 | 183,549 | 129,502 |
Low | 181,918 | 133,723 | 101,385 | 80,859 |
Moderate | 129,834 | 117,151 | 88,716 | 65,759 |
High | 125,323 | 123,767 | 93,204 | 68,741 |
Very High | 70,899 | 68,977 | 49,403 | 24,750 |
Classes | Present (km2) | RCP 2.6 (km2) | RCP 4.5 (km2) | RCP 8.5 (km2) |
---|---|---|---|---|
Very Low | 4965 | 3662 | 1985 | 1287 |
Low | 2920 | 2723 | 1584 | 891 |
Moderate | 2646 | 2454 | 1496 | 848 |
High | 3764 | 3811 | 2939 | 1429 |
Very High | 4862 | 3781 | 2562 | 847 |
Classes | Number of Training Data | Training Data Covered (%) | Number of Additional Data | Additional Data Covered (%) |
---|---|---|---|---|
Very Low | 0 | 0 | 282 | 1 |
Low | 0 | 0 | 697 | 2.46 |
Moderate | 9 | 0.09 | 1680 | 5.94 |
High | 617 | 6.17 | 6060 | 21.42 |
Very High | 9374 | 93.74 | 19,576 | 69.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Guo, L.; Yang, Y.; Zheng, H.; Liu, L.; Jia, H.; Diao, B.; Liu, J. Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods. Remote Sens. 2023, 15, 3331. https://doi.org/10.3390/rs15133331
Wang R, Guo L, Yang Y, Zheng H, Liu L, Jia H, Diao B, Liu J. Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods. Remote Sensing. 2023; 15(13):3331. https://doi.org/10.3390/rs15133331
Chicago/Turabian StyleWang, Rui, Lanlan Guo, Yuting Yang, Hao Zheng, Lianyou Liu, Hong Jia, Baijian Diao, and Jifu Liu. 2023. "Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods" Remote Sensing 15, no. 13: 3331. https://doi.org/10.3390/rs15133331
APA StyleWang, R., Guo, L., Yang, Y., Zheng, H., Liu, L., Jia, H., Diao, B., & Liu, J. (2023). Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods. Remote Sensing, 15(13), 3331. https://doi.org/10.3390/rs15133331