Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface
Abstract
:1. Introduction
2. The ODYSEA Simulator
2.1. Surface Current Errors
2.2. The Coupled Ocean–Atmosphere Simulation (COAS)
2.3. Synthetic Datasets
3. Results
3.1. Seasonal and Geographical Variability of the Total Wind Work
3.2. Mesoscale Wind Work
3.3. Comparison with Wind Work from Existing Satellite Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Ferrari, R.; Wunsch, C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Fan, Y.; Metzger, E.J.; Smedstad, O.M. The wind work input into the global ocean revealed by a 17-year global HYbrid coordinate ocean model reanalysis. Ocean. Model. 2018, 130, 29–39. [Google Scholar] [CrossRef]
- Torres, H.S.; Klein, P.; Wang, J.; Wineteer, A.; Qiu, B.; Thompson, A.F.; Renault, L.; Rodriguez, E.; Menemenlis, D.; Molod, A.; et al. Wind work at the air-sea interface: A modeling study in anticipation of future space missions. Geosci. Model Dev. 2022, 15, 8041–8058. [Google Scholar] [CrossRef]
- Nikurashin, M.; Vallis, G.K.; Adcroft, A. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. 2013, 6, 48–51. [Google Scholar] [CrossRef]
- Alford, M.H.; MacKinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [Green Version]
- Eden, C.; Dietze, H. Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Klein, P.; Lapeyre, G.; Siegelman, L.; Qiu, B.; Fu, L.L.; Torres, H.; Su, Z.; Menemenlis, D.; Le Gentil, S. Ocean-Scale Interactions from Space. Earth Space Sci. 2019, 6, 795–817. [Google Scholar] [CrossRef] [Green Version]
- Maximenko, N.A.; Bang, B.; Sasaki, H. Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Renault, L.; Molemaker, M.J.; McWilliams, J.C.; Shchepetkin, A.F.; Lemarié, F.; Chelton, D.; Illig, S.; Hall, A. Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr. 2016, 46, 1685–1704. [Google Scholar] [CrossRef]
- Large, W.G.; Yeager, S.G. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and fLux Climatologies; Tech. Note NCAR/TN-460+ STR; National Center of Atmospheric Research: Boulder, CO, USA, 2004; Volume 434. [Google Scholar]
- The National Academy of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observational from Space; The National Academy Press: Washington, DC, USA, 2018. [Google Scholar]
- Rodríguez, E.; Bourassa, M.; Chelton, D.; Farrar, J.T.; Long, D.; Perkovic-Martin, D.; Samelson, R. The winds and currents mission concept. Front. Mar. Sci. 2019, 6, 438. [Google Scholar] [CrossRef]
- Wineteer, A.; Torres, H.S.; Rodriguez, E. On the Surface Current Measurement Capabilities of Spaceborne Doppler Scatterometry. Geophys. Res. Lett. 2020, 47, e2020GL090116. [Google Scholar] [CrossRef]
- Strobach, E.; Klein, P.; Molod, A.; Fahad, A.A.; Trayanov, A.; Menemenlis, D.; Torres, H. Local Air-Sea Interactions at Ocean Mesoscale and Submesoscale in a Western Boundary Current. Geophys. Res. Lett. 2022, 49, 1–10. [Google Scholar] [CrossRef]
- Soufflet, Y.; Marchesiello, P.; Lemarié, F.; Jouanno, J.; Capet, X.; Debreu, L.; Benshila, R. On effective resolution in ocean models. Ocean. Model. 2016, 98, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Griffies, S.M.; Hallberg, R.W. Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models. Mon. Weather. Rev. 2000, 128, 2935–2946. [Google Scholar] [CrossRef]
- Maximenko, N.A.; Melnichenko, O.V.; Pearn, P.N.; Hideharu, S. Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Straub, D. Effects of adding forced near-inertial motion to a wind-driven channel flow. J. Phys. Oceanogr. 2020, 50, 2983–2996. [Google Scholar] [CrossRef]
- Wenegrat, J.O.; Thomas, L.N. Ekman transport in balanced currents with curvature. J. Phys. Oceanogr. 2017, 47, 1189–1203. [Google Scholar] [CrossRef]
- Xu, C.; Zhai, X.; Shang, X.D. Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett. 2016, 43, 12–174. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Nakamura, H.; Wu, D.; Lin, X.; Wu, L. Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Clim. 2017, 30, 1861–1880. [Google Scholar] [CrossRef]
- Renault, L.; McWilliams, J.; Gula, J. Dampening of Submesoscale Currents by Air-Sea Stress Coupling in the Californian Upwelling System. Sci. Rep. 2018, 8, 13388. [Google Scholar] [CrossRef] [Green Version]
- Foussard, A.; Lapeyre, G.; Riwal, P. Storm tracks response to oceanic eddies in idealized atmospheric simulations. J. Clim. 2019, 32, 445–463. [Google Scholar] [CrossRef]
- Small, R.J.; Bryan, F.O.; Bishop, S.P.; Tomas, R.A. Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? J. Clim. 2019, 32, 2397–2421. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, S.; Danabasoglu, G.; Yeager, S.G.; Fu, H.; Wang, H.; Castruccio, F.S.; Chen, Y.; Edwards, J.; Fu, D.; et al. An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002298. [Google Scholar] [CrossRef]
- Rai, S.; Hecht, M.; Maltrud, M.; Aluie, H. Scale of oceanic eddy killing by wind from global satellite observations. Sci. Adv. 2021, 7, eabf4920. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.S.; Klein, P.; Menemenlis, D.; Qiu, B.; Su, Z.; Wang, J.; Chen, S.; Fu, L.L. Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Ocean. 2018, 123, 8084–8105. [Google Scholar] [CrossRef] [Green Version]
- Strobach, E.; Molod, A.; Trayanov, A.; Forget, G.; Campin, J.M.; Hill, C.; Menemenlis, D. Three-to-Six-Day Air–Sea Oscillation in Models and Observations. Geophys. Res. Lett. 2020, 47, e2019GL085837. [Google Scholar] [CrossRef]
- Menemenlis, D.; Campin, J.M.; Heimbach, P.; Hill, C.N.; Lee, T.; Nguyen, A.T.; Schodlok, M.P.; Zhang, H. ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis. Mercator Ocean Quarterly Newsletter, 31 October 2008. [Google Scholar]
Data | Spatial Resolution | Temporal Resolution |
---|---|---|
COAS | 4 km | 1 h |
ODYSEA-NF (noise-free) | 5 km | 12 h |
ODYSEA-N (noisy) | 5 km | 12 h |
(“AVISO + QuickScat-like”) | U at for 130 km and at 50 km | U at for 7-day and at 12 h |
(“Globcurrent + QuickScat-like”) | U at for 130 km and at 50 km | U at for 1-day and at 12 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, H.; Wineteer, A.; Klein, P.; Lee, T.; Wang, J.; Rodriguez, E.; Menemenlis, D.; Zhang, H. Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface. Remote Sens. 2023, 15, 3337. https://doi.org/10.3390/rs15133337
Torres H, Wineteer A, Klein P, Lee T, Wang J, Rodriguez E, Menemenlis D, Zhang H. Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface. Remote Sensing. 2023; 15(13):3337. https://doi.org/10.3390/rs15133337
Chicago/Turabian StyleTorres, Hector, Alexander Wineteer, Patrice Klein, Tong Lee, Jinbo Wang, Ernesto Rodriguez, Dimitris Menemenlis, and Hong Zhang. 2023. "Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface" Remote Sensing 15, no. 13: 3337. https://doi.org/10.3390/rs15133337
APA StyleTorres, H., Wineteer, A., Klein, P., Lee, T., Wang, J., Rodriguez, E., Menemenlis, D., & Zhang, H. (2023). Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface. Remote Sensing, 15(13), 3337. https://doi.org/10.3390/rs15133337