Influence of the Coriolis Force on Spreading of River Plumes
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simpson, J.H.; Sharples, J.; Rippeth, T.P. A prescriptive model of stratification induced by freshwater runoff. Estuar. Coast. Shelf Sci. 1991, 33, 23–35. [Google Scholar] [CrossRef]
- Kang, Y.; Pan, D.; Bai, Y.; He, X.; Chen, X.; Chen, C.T.A.; Wang, D. Areas of the global major river plumes. Acta Oceanol. Sin. 2013, 32, 79–88. [Google Scholar] [CrossRef]
- Tang, D.; Kester, D.R.; Ni, I.H.; Qi, Y.; Kawamura, H. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae 2003, 2, 89–99. [Google Scholar] [CrossRef]
- Boyer, E.W.; Howarth, R.W.; Galloway, J.N.; Dentener, F.J.; Green, P.A.; Vörösmarty, C.J. Riverine nitrogen export from the continents to the coasts. Glob. Biogeochem. Cycles 2006, 20, GB1S9. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D.; Farnsworth, K.L. River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: Cambridge, UK, 2013; 393p. [Google Scholar]
- Osadchiev, A.A. Spreading of the Amur river plume in the Amur Liman, the Sakhalin Gulf, and the Strait of Tartary. Oceanology 2017, 57, 376–382. [Google Scholar] [CrossRef]
- Hetland, R.D. Relating river plume structure to vertical mixing. J. Phys. Oceanogr. 2005, 35, 1667–1688. [Google Scholar] [CrossRef]
- Horner-Devine, A.R.; Hetland, R.D.; MacDonald, D.G. Mixing and transport in coastal river plumes. Ann. Rev. Mar. Sci. 2015, 47, 569–594. [Google Scholar] [CrossRef]
- Spicer, P.; Cole, K.L.; Huguenard, K.; MacDonald, D.G.; Whitney, M.M. The effect of bottom-generated tidal mixing on tidally pulsed river plumes. J. Phys. Oceanogr. 2021, 51, 2223–2241. [Google Scholar] [CrossRef]
- Osadchiev, A.; Gordey, A.; Barymova, A.; Sedakov, R.; Rogozhin, V.; Zhiba, R.; Dbar, R. Lateral border of a small river plume: Salinity structure, instabilities and mass transport. Remote Sens. 2022, 14, 3818. [Google Scholar] [CrossRef]
- Zu, T.; Wang, D.; Gan, J.; Guan, W. On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system. J. Mar. Sys. 2014, 136, 65–79. [Google Scholar] [CrossRef]
- Otero, P.; Ruiz-Villarreal, M.; Peliz, A. Variability of river plumes off Northwest Iberia in response to wind events. J. Mar. Syst. 2008, 72, 238–255. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Barymova, A.A.; Sedakov, R.O.; Zhiba, R.Y.; Dbar, R.Y. Spatial structure, short-temporal variability, and dynamical features of small river plumes as observed by aerial drones: Case study of the Kodor and Bzyp river plumes. Remote Sens. 2020, 12, 3079. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Sedakov, R.O.; Barymova, A.A. Response of a small river plume on wind forcing. Front. Mar. Sci. 2021, 8, 1910. [Google Scholar] [CrossRef]
- Basdurak, N.B.; Largier, J.L. Wind effects on small-scale river and creek plumes. J. Geophys. Res. Ocean. 2022, 127, e2021JC018381. [Google Scholar] [CrossRef]
- O’Donnell, J. The formation and fate of a river plume: A numerical model. J. Phys. Oceanogr. 1990, 20, 551–569. [Google Scholar] [CrossRef]
- Ekman, V.W. On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys. 1905, 2, 1874–1954. [Google Scholar]
- Yankovsky, A.E.; Chapman, D.C. A simple theory for the fate of buoyant coastal discharges. J. Phys. Oceanogr. 1997, 27, 1386–1401. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Zavialov, P.O. Structure and dynamics of plumes generated by small rivers. In Estuaries and Coastal Zones—Dynamics and Response to Environmental Changes; Pan, J., Devlin, A., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhurbas, N.V. The wind-induced drift velocity of the freshwater layer on the sea’s surface. Oceanology 2013, 53, 136–144. [Google Scholar] [CrossRef]
- Osadchiev, A.; Sedakov, R. Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat 8 and Sentinel-2. Remote Sens. Environ. 2019, 221, 522–533. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Madsen, O.S. A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 1977, 7, 248–255. [Google Scholar] [CrossRef]
- Kirwan, A.D., Jr.; McNally, G.; Pazan, S.; Wert, R. Analysis of surface current response to wind. J. Phys. Oceanogr. 1979, 9, 401–412. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems. Limnol. Oceanogr. 2010, 55, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Korotkina, O.A.; Zavialov, P.O.; Osadchiev, A.A. Submesoscale variability of the current and wind fields in the coastal region of Sochi. Oceanology 2011, 51, 745–754. [Google Scholar] [CrossRef]
- Korotkina, O.A.; Zavialov, P.O.; Osadchiev, A.A. Synoptic variability of currents in the coastal waters of Sochi. Oceanology 2014, 54, 545–556. [Google Scholar] [CrossRef]
- Zavialov, I.B.; Osadchiev, A.A.; Sedakov, R.O.; Barnier, B.; Molines, J.-M.; Belokopytov, V.N. Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait. Ocean Sci. 2020, 16, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Nikiema, O.; Devenon, J.-L.; Baklouti, M. Numerical modeling of the Amazon River plume. Cont. Shelf Res. 2007, 27, 873–899. [Google Scholar] [CrossRef]
- Nash, J.D.; Kilcher, L.F.; Moum, J.N. Structure and composition of a strongly stratified, tidally pulsed river plume. J. Geophys. Res. Ocean. 2009, 114, C00B12. [Google Scholar] [CrossRef] [Green Version]
- Osadchiev, A.A.; Medvedev, I.P.; Shchuka, S.A.; Kulikov, M.E.; Spivak, E.A.; Pisareva, M.A.; Semiletov, I.P. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
- Ivanov, A.Y. The oil spill from a shipwreck in Kerch Strait: Radar monitoring and numerical modelling. Int. J. Remote Sens. 2010, 31, 4853–4868. [Google Scholar] [CrossRef]
- Nemirovskaya, I.A.; Zavialov, P.O.; Khramtsova, A.V. Hydrocarbon pollution in the waters and sediments of the Kerch Strait. Mar. Pol. Bull. 2022, 180, 113760. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Mamedov, R.M.; Kontar, A.E.; Korotenko, L.A. Particle tracking method in the approach for prediction of oil slick transport in the sea: Modelling oil pollution resulting from river input. J. Mar. Syst. 2004, 48, 159–170. [Google Scholar] [CrossRef]
- Korotenko, K.A. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: An assessment of the environmental impacts. PeerJ 2018, 6, e5448. [Google Scholar] [CrossRef] [Green Version]
- Korshenko, E.A.; Zhurbas, V.M.; Osadchiev, A.A.; Belyakova, P.A. Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018. Mar. Pol. Bull. 2020, 160, 111678. [Google Scholar] [CrossRef]
- Pogojeva, M.; Zhdanov, I.; Berezina, A.; Lapenkov, A.; Kosmach, D.; Osadchiev, A.; Hanke, G.; Semiletov, I.; Yakushev, E. Distribution of floating marine macro-litter in relation to oceanographic characteristics in the Russian Arctic Seas. Mar. Pol. Bull. 2021, 166, 112201. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Kester, D.R.; Wang, Z.; Lian, J.; Kawamura, H. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China. Remote Sens. Environ. 2003, 84, 506–515. [Google Scholar] [CrossRef]
- Duran-Colmenares, A.; Barrios-Pina, H.; Ramirez-Leon, H. Numerical modeling of water thermal plumes emitted by thermal power plants. Water 2016, 8, 482. [Google Scholar] [CrossRef] [Green Version]
River (Region) | Location of River Mouth | Watershed Basin Area, km2 | Average Discharge Rate, m3/s |
---|---|---|---|
Shirokaya (Novaya Zemlya) | 76.085°N, 67.181°E | - * | - * |
Tiutey-Yakha (Yamal) | 71.421°N, 67.580°E | 3200 | 50 |
Yuribey (Yamal) | 68.891°N, 68.852°E | 9700 | 80 |
Thjorsa (Iceland) | 63.773°N, 20.797°W | 7500 | 390 |
Tigil (Kamchatka) | 58.024°N, 158.2017°E | 17,800 | 200 |
Saint-Jean (Labrador) | 50.279°N, 64.334°W | 5600 | 130 |
Bzyb (Abkhazia) | 43.186°N, 40.281°E | 1500 | 100 |
Pescara (Italy) | 42.469°N, 14.231°E | 3200 | 60 |
Garigliano (Italy) | 41.222°N, 13.762°E | 5000 | 120 |
Koprucay (Turkey) | 36.828°N, 31.170°E | 2400 | 100 |
Sebou (Morocco) | 34.266°N, 6.687°W | 14,600 | 140 |
Brazos (Texas) | 28.876°N, 95.378°W | 116,000 | 240 |
Houlong (Taiwan) | 24.625°N, 120.742°E | 540 | 50 |
Zhuoshui (Taiwan) | 23.841°N, 120.239°E | 3200 | 170 |
Tuxpan (Mexico) | 20.972°N, 97.300°W | 5900 | 2100 |
Pampanga (Luzon) | 14.768°N, 120.656°E | 9800 | |
Ba Hon (Vietnam) | 10.243°N, 104.583°W | - ** | - ** |
Sinu (Colombia) | 9.444°N, 75.952°W | 13,700 | 450 |
Muda (Malaysia) | 5.567°N, 100.323°E | 4300 | 110 |
Pembuang (Borneo) | 3.434°S, 112.567°E | 12,900 | 1200 |
Sekampung (Sumatra) | 5.577°S, 105.814°E | 5700 | 240 |
Ruvuma (Tanzania) | 10.474°S, 40.437°E | 155,500 | 475 |
Jequitinhonha (Brazil) | 15.850°S, 38.857°W | 78,500 | 410 |
Doce (Brazil) | 19.656°S, 39.815°W | 86,200 | 900 |
Limpopo (Mozambique) | 25.221°S, 33.517°E | 415,000 | 170 |
Rio Grande (Brazil) | 32.199°S, 52.071°W | 200,000 | 1200 |
Waiapu (New Zealand) | 37.814°S, 178.386°E | 1700 | 80 |
Rio Negro (Patagonia) | 41.044°S, 62.782°W | 95,000 | 860 |
Clarence (New Zealand) | 42.174°S, 173.931°E | 3300 | 50 |
Santa Cruz (Patagonia) | 50.133°S, 68.343°W | 29,700 | 800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osadchiev, A.; Alfimenkov, I.; Rogozhin, V. Influence of the Coriolis Force on Spreading of River Plumes. Remote Sens. 2023, 15, 3397. https://doi.org/10.3390/rs15133397
Osadchiev A, Alfimenkov I, Rogozhin V. Influence of the Coriolis Force on Spreading of River Plumes. Remote Sensing. 2023; 15(13):3397. https://doi.org/10.3390/rs15133397
Chicago/Turabian StyleOsadchiev, Alexander, Ivan Alfimenkov, and Vladimir Rogozhin. 2023. "Influence of the Coriolis Force on Spreading of River Plumes" Remote Sensing 15, no. 13: 3397. https://doi.org/10.3390/rs15133397
APA StyleOsadchiev, A., Alfimenkov, I., & Rogozhin, V. (2023). Influence of the Coriolis Force on Spreading of River Plumes. Remote Sensing, 15(13), 3397. https://doi.org/10.3390/rs15133397