Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. CBH Estimation Method
2.3. Data Quality Control
3. Climatology of CBH
3.1. Relationship between CBH and Cloud Properties
3.2. Geographical Distribution and Seasonal Variation of CBH
3.3. Diurnal Variation of CBH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, M.B. Cloud microphysics and climate. Science 1997, 267, 1072–1078. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Long, C.N.; Wang, H.; Comstock, J.M.; McFarlane, S.A.; Xie, S. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface measurements. Atmos. Chem. Phys. 2012, 12, 1785–1810. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, M.D.; Randall, D.A.; Webb, M.J.; Klein, S.A. Clearing clouds of uncertainty. Nat. Clim. Change 2017, 7, 674–678. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Min, J.; Huang, X.; Minnis, P.; Zhang, R.; Haggerty, J.; Palikonda, R. Variational Assimilation of Cloud Liquid/Ice Water Path and Its Impact on NWP. J. Appl. Meteorol. Climatol. 2015, 54, 1809–1825. [Google Scholar] [CrossRef]
- Jones, T.A.; Stensrud, D.J. Assimilating Cloud Water Path as a Function of Model Cloud Microphysics in an Idealized Simulation. Mon. Wea. Rev. 2015, 143, 2052–2081. [Google Scholar] [CrossRef]
- Randall, D.; Coakley, J., Jr.; Fairall, C.; Kropfli, R.; Lenschow, D. Outlook for research on subtropical marine stratiform clouds. Bull. Am. Meteor. Soc. 1984, 65, 1290–1301. [Google Scholar] [CrossRef]
- McFarlane, S.A.; Mather, J.H.; Ackerman, T.P. Analysis of tropical radiative heating profiles: A comparison of models and measurements. J. Geophys. Res. 2007, 112, D14218. [Google Scholar] [CrossRef] [Green Version]
- Viúdez-Mora, A.; Costa-Surós, M.; Calbó, J.; González, J.A. Modeling Atmospheric Longwave Radiation at the Surface During Overcast Skies: The Role of Cloud Base Height. J. Geophys. Res. Atmos. 2014, 120, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Potter, G.L.; Cess, R.D. Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res. 2004, 109, D02106. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.; Lu, D.; Duan, S.; Bi, Y.; Liu, B. Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar. Atmos. Meas. Tech. 2020, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, L.; Guo, J. Climatology of cloud-base height from long-term radiosonde measurements in China. Adv. Atmos. Sci. 2018, 35, 158–168. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K. The CloudSat mission and the A-Train: A new dimension of space-based measurements of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimate: Algorithm description and results. J. Appl. Meteorol. Climatol. 2008, 47, 1175–1198. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Putri, N.S.; Saito, M.; Tokoro, Y.; Sekiguchi, M.; Yang, P.; Baum, B.A. Cloud property retrieval from multiband infrared measurements by Himawari-8. J. Meteor. Soc. Jpn. 2018, 96, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Li, J.; Wang, F.; Liu, Z.; Menzel, W.P. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239, 111616. [Google Scholar] [CrossRef]
- Hutchison, K.D. The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA’s EOS Aqua mission. Int. J. Remote Sens. 2002, 23, 5249–5265. [Google Scholar] [CrossRef]
- Seaman, C.J.; Noh, Y.-J.; Miller, S.D.; Heidinger, A.K.; Lindsey, D.T. Cloud base height estimate from VIIRS. Part I: Operational algorithm validation against CloudSat. J. Atmos. Ocean. Technol. 2017, 34, 567–583. [Google Scholar] [CrossRef] [Green Version]
- Barker, H.W.; Jerg, M.P.; Wehr, T.; Kato, S.; Donovan, D.P.; Hogan, R.J. A 3D cloud-construction algorithm for the Earth CARE satellite mission. Quart. J. Roy. Meteor. Soc. 2011, 137, 1042–1058. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Forsythe, J.M.; Partain, P.T.; Haynes, J.M.; Bankert, R.L.; Sengupta, M.; Mitrescu, C.; Hawkins, J.D.; Haar, T.H.V. Estimating three-dimensional cloud structure via statistically blended satellite measurements. J. Appl. Meteorol. Climatol. 2014, 53, 437–455. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.J.; Forsythe, J.M.; Miller, S.D.; Seaman, C.J.; Li, Y.; Heidinger, A.K.; Lindsey, D.T.; Rogers, M.A.; Partain, P.T. Cloud-base height estimation from VIIRS. Part Ⅱ: A statistical algorithm based on a-train satellite data. J. Atmos. Ocean. Technol. 2017, 34, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, K.D.; Wong, E.; Ou, S.C. Cloud base height retrieval during nighttime conditions with MODIS data. Int. J. Remote Sens. 2006, 27, 2847–2862. [Google Scholar] [CrossRef]
- Lin, H.; Li, Z.; Li, J.; Zhang, F.; Min, M.; Menzel, W.P. Estimate of daytime single-layer cloud base height from advanced baseline imager measurements. Remote Sens. Environ. 2022, 274, 112970. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, S.; Liu, C.; Teng, S.; Letu, H.; Zhang, P.; Ai, W. Retrieving cloud base height from passive radiometer observations via a systematic effective cloud water content table. Remote Sens. Environ. 2023, 294, 113633. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Shi, J. High-resolution retrieval of cloud microphysical properties and surface solar radiation using himawari-8/ahi next-generation geostationary satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.; Shang, H.; Ma, R.; Yang, K.; Shi, J. A new benchmark for surface radiation products over the east Asia–Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite. Bull. Am. Meteorol. Soc. 2022, 103, E873–E888. [Google Scholar] [CrossRef]
- Wang, Z. CloudSat Project: Level 2 Combined Radar and Lidar Cloud Scenario Classification Product Process Description and Interface Control Document; California Institute of Technology: Pasadena, CA, USA, 2013; p. 61. [Google Scholar]
- Chang, F.L.; Li, Z. A near-global climatology of single-layer and overlapping clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm. J. Clim. 2005, 18, 4752–4771. [Google Scholar] [CrossRef]
- Naud, C.M.; Baum, B.A.; Pavolonis, M.; Heidinger, A.; Frey, R.; Zhang, H. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sens. Environ. 2007, 107, 200–210. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, S.; Liu, C.; Teng, S.; Xu, N.; Hu, X.; Zhang, P.; Yan, W. Assessing overlapping cloud top heights: An extrapolation method and its performance. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4107811. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, C.; Ma, S.; Wang, X.; Shang, J.; Wang, J.; Ai, W.; Yan, W. Detecting Multilayer Clouds from the Geostationary Advanced Himawari Imager Using Machine Learning Techniques. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4103112. [Google Scholar] [CrossRef]
- Poetzsch-Heffter, C.; Liu, Q.; Ruperecht, E.; Simmer, C. Effect of cloud types on the earth radiation budget calculated with the isccp cl dataset: Methodology and initial results. J. Clim. 1995, 8, 829–843. [Google Scholar] [CrossRef]
- Nakajima, T.; Higurashi, A.; Kawamoto, K.; Penner, J.E. A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 2001, 28, 1171–1174. [Google Scholar] [CrossRef]
- Meerkötter, R.; Bugliaro, L. Diurnal evolution of cloud base heights in convective cloud fields from MSG/SEVIRI data. Atmos. Chem. Phys. 2009, 9, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Mallick, S. Impact of Adaptively Thinned GOES-16 Cloud Water Path in an Ensemble Data Assimilation System. Meteorology 2022, 1, 513–530. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Zhuge, X.; Liu, C.; Weng, F.; Wang, M. Retrieval of cloud properties from thermal infrared radiometry using convolutional neural network. Remote Sens. Environ. 2022, 278, 113079. [Google Scholar] [CrossRef]
Satellite | Products | Variables |
---|---|---|
Himawari-8 | L1b | Reflectance (0.64, 1.6, and 2.3 μm), brightness temperature (3.9, 7.3, 8.6, 11.2 and 12.4 μm), solar zenith angle, solar azimuth angle |
Himawari-8 | L2 CLP | Cloud top height, cloud top temperature, cloud optical thickness, cloud effective radius, latitude, longitude |
CloudSat, CALIPSO | 2B-CLDCLASS-LIDAR | Cloud profiles, multilayer cloud flag, precipitation flag |
Mean Bias, km | Standard Deviation, km | R2 | |
---|---|---|---|
Single-layer clouds | 0.2 | 1.9 | 0.85 |
Multilayer clouds | −3.2 | 3.7 | 0.47 |
Season | Latitude | CTH (km) | CBH (km) | CGT (km) |
---|---|---|---|---|
MAM | 60°N–20°N | 4.03 | 1.81 | 2.22 |
20°N–20°S | 6.82 | 3.76 | 3.06 | |
20°S–60°S | 4.15 | 1.75 | 2.41 | |
JJA | 60°N–20°N | 5.74 | 2.71 | 3.03 |
20°N–20°S | 7.46 | 4.21 | 3.45 | |
20°S–60°S | 3.42 | 1.47 | 1.95 | |
SON | 60°N–20°N | 5.23 | 2.58 | 2.65 |
20°N–20°S | 7.44 | 4.13 | 3.31 | |
20°S–60°S | 3.63 | 1.52 | 2.11 | |
DJF | 60°N–20°N | 3.40 | 1.48 | 1.93 |
20°N–20°S | 6.97 | 3.89 | 3.08 | |
20°S–60°S | 4.48 | 2.04 | 2.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Zhao, X.; Hu, S.; Ma, S.; Wang, L.; Wang, X.; Ai, W. Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations. Remote Sens. 2023, 15, 3424. https://doi.org/10.3390/rs15133424
Tan Z, Zhao X, Hu S, Ma S, Wang L, Wang X, Ai W. Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations. Remote Sensing. 2023; 15(13):3424. https://doi.org/10.3390/rs15133424
Chicago/Turabian StyleTan, Zhonghui, Xianbin Zhao, Shensen Hu, Shuo Ma, Li Wang, Xin Wang, and Weihua Ai. 2023. "Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations" Remote Sensing 15, no. 13: 3424. https://doi.org/10.3390/rs15133424
APA StyleTan, Z., Zhao, X., Hu, S., Ma, S., Wang, L., Wang, X., & Ai, W. (2023). Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations. Remote Sensing, 15(13), 3424. https://doi.org/10.3390/rs15133424