First Ocean Wave Retrieval from HISEA-1 SAR Imagery through an Improved Semi-Automatic Empirical Model
Abstract
:1. Introduction
2. Data
2.1. HISEA-1 SAR Images
2.2. Reference Data
2.2.1. Buoy Data
2.2.2. WAVEWATCH III Data
2.2.3. MFWAM Data
2.2.4. ERA5 Reanalysis
2.2.5. Altimeter Measurement
2.3. Model Data Validation with Buoys
3. Methodology
3.1. Filtering, Detrending, and Bright Target Removals
- no large area of land in the SAR image;
- the absence of significant atmospheric disturbances and rainfall factors;
- SAR data matched with ERA5 wind speeds greater than 2 m/s and wave heights greater than 0.5 m.
3.2. Semi-Empirical Model and Its Problems
3.3. An Improved Empirical Model
3.3.1. Cross-Spectra Calculation
3.3.2. Azimuth Cut-Off Estimation
3.3.3. Spectral Information Extraction
3.4. Flowchart
4. Validation and Performance
4.1. Comparison with Model Data
4.2. Comparison with Altimeter Observation
5. Application and Case Studies
5.1. Coastal Wave Field Extraction
5.2. Wave Retrieval under Typhoon
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
HISEA-1 Time | Altimeter | Altimeter Time |
---|---|---|
15 December 2022 T04:30 | Jason-3 | 15 December 2022 T05:27 |
23 January 2023 T02:23 | Sentinel-3A | 23 January 2023 T02:07 |
12 February 2023 T04:07 | Sentinel-6A | 12 February2023 T04:02 |
17 February 2023 T03:51 | Cryosat-2 | 17 February 2023 T04:46 |
20 February 2023 T02:45 | Jason-3 | 20 February 2023 T02:06 |
22 February 2023 T02:27 | Sentinel-6A | 22 February 2023 T02:01 |
23 February 2023 T02:16 | Jason-3 | 23 February 2023 T01:19 |
23 February 2023 T02:16 | Sentinel-3A | 23 February 2023 T02:03 |
25 February 2023 T14:08 | Jason-3 | 25 February 2023 T14:28 |
Appendix B
HISEA-1 Time | SAR SWH (m) | Buoy SWH (m) | Incidence Angle (°) |
---|---|---|---|
1 December 2022 04:31:02 | 4.6 | 3.8 | 30 |
8 December 2022 15:46:24 | 2.9 | 2.6 | 23.5 |
14 December 2022 14:11:01 | 2.7 | 2.2 | 14 |
30 December 2022 02:50:01 | 3.0 | 3.0 | 23.5 |
3 January 2023 02:13:54 | 2.3 | 3.1 | 37 |
References
- Odériz, I.; Mori, N.; Shimura, T.; Webb, A.; Silva, R.; Mortlock, T. Transitional wave climate regions on continental and polar coasts in a warming world. Nat. Clim. Change 2022, 12, 662–671. [Google Scholar] [CrossRef]
- Vanem, E.; Walker, S.-E. Identifying trends in the ocean wave climate by time series analyses of significant wave heightdata. Ocean. Eng. 2013, 61, 148–160. [Google Scholar] [CrossRef]
- Podgorski, K.; Rychlik, I. A model of significant wave height for reliability assessment of a ship. J. Mar. Syst. 2014, 130, 109–123. [Google Scholar] [CrossRef]
- Alpers, W.R.; Ross, D.B.; Rufenach, C.L. On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res. Ocean. 1981, 86, 6481–6498. [Google Scholar] [CrossRef]
- Hasselmann, K.; Raney, R.; Plant, W.; Alpers, W.; Shuchman, R.; Lyzenga, D.R.; Rufenach, C.; Tucker, M. Theory of synthetic aperture radar ocean imaging: A MARSEN view. J. Geophys. Res. Ocean. 1985, 90, 4659–4686. [Google Scholar] [CrossRef]
- Alpers, W.R.; Bruening, C. On the relative importance of motion-related contributions to the SAR imaging mechanism of ocean surface waves. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 873–885. [Google Scholar] [CrossRef]
- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res. Ocean. 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Hasselmann, S.; Brüning, C.; Hasselmann, K.; Heimbach, P. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J. Geophys. Res. Ocean. 1996, 101, 16615–16629. [Google Scholar] [CrossRef]
- Mastenbroek, C.; De Valk, C. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. J. Geophys. Res. Ocean. 2000, 105, 3497–3516. [Google Scholar] [CrossRef]
- Engen, G.; Johnsen, H. SAR-ocean wave inversion using image cross spectra. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1047–1056. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S.; Hoja, D. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J. Geophys. Res. Ocean. 2005, 110, C05004. [Google Scholar] [CrossRef] [Green Version]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from sar images of the ocean. Ann. Telecommun. 2001, 56, 682–699. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; König, T.; Lehner, S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res. Ocean. 2007, 112, C03019. [Google Scholar] [CrossRef]
- Li, X.-M.; Lehner, S.; Bruns, T. Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Trans. Geosci. Remote Sens. 2010, 49, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Stopa, J.E.; Mouche, A. Significant wave heights from S entinel-1 SAR: Validation and applications. J. Geophys. Res. Ocean. 2017, 122, 1827–1848. [Google Scholar] [CrossRef] [Green Version]
- Beal, R.; Tilley, D.; Monaldo, F. Large-and small-scale spatial evolution of digitally processed ocean wave spectra from SEASAT synthetic aperture radar. J. Geophys. Res. Ocean. 1983, 88, 1761–1778. [Google Scholar] [CrossRef]
- Stopa, J.E.; Ardhuin, F.; Chapron, B.; Collard, F. Estimating wave orbital velocity through the azimuth cutoff from space-borne satellites. J. Geophys. Res. Ocean. 2015, 120, 7616–7634. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Yang, J.; Zheng, G.; Wang, J. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images. Acta Oceanol. Sin. 2015, 34, 93–101. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, Z.; Li, X.; Li, H. Ocean wave parameters retrieval from Sentinel-1 SAR imagery. Remote Sens. 2016, 8, 707. [Google Scholar] [CrossRef] [Green Version]
- Grieco, G.; Lin, W.; Migliaccio, M.; Nirchio, F.; Portabella, M. Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int. J. Remote Sens. 2016, 37, 5086–5104. [Google Scholar] [CrossRef]
- Shao, W.; Hu, Y.; Yang, J.; Nunziata, F.; Sun, J.; Li, H.; Zuo, J. An empirical algorithm to retrieve significant wave height from Sentinel-1 synthetic aperture radar imagery collected under cyclonic conditions. Remote Sens. 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Shao, W.; Zhu, S.; Sun, J.; Yuan, X.; Li, S.; Shi, J.; Zuo, J. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. Acta Oceanol. Sin. 2018, 37, 1–10. [Google Scholar] [CrossRef]
- Fan, C.; Song, T.; Yan, Q.; Meng, J.; Wu, Y.; Zhang, J. Evaluation of Multi-Incidence Angle Polarimetric Gaofen-3 SAR Wave Mode Data for Significant Wave Height Retrieval. Remote Sens. 2022, 14, 5480. [Google Scholar] [CrossRef]
- Wu, K.; Li, X.M.; Huang, B. Retrieval of ocean wave heights from spaceborne SAR in the Arctic Ocean with a neural network. J. Geophys. Res. Ocean. 2021, 126, e2020JC016946. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Yang, J.; Shi, C. A semiempirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data. Acta Oceanol. Sin. 2012, 31, 59–66. [Google Scholar] [CrossRef]
- Wang, C.; Mouche, A.; Tandeo, P.; Stopa, J.E.; Longépé, N.; Erhard, G.; Foster, R.C.; Vandemark, D.; Chapron, B. A labelled ocean SAR imagery dataset of ten geophysical phenomena from Sentinel-1 wave mode. Geosci. Data J. 2019, 6, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Rikka, S.; Pleskachevsky, A.; Jacobsen, S.; Alari, V.; Uiboupin, R. Meteo-marine parameters from Sentinel-1 SAR imagery: Towards near real-time services for the baltic sea. Remote Sens. 2018, 10, 757. [Google Scholar] [CrossRef] [Green Version]
- Pleskachevsky, A.; Jacobsen, S.; Tings, B.; Schwarz, E. Estimation of sea state from Sentinel-1 Synthetic aperture radar imagery for maritime situation awareness. Int. J. Remote Sens. 2019, 40, 4104–4142. [Google Scholar] [CrossRef] [Green Version]
- Pleskachevsky, A.; Rosenthal, W.; Lehner, S. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 464–484. [Google Scholar] [CrossRef]
- Xue, S.; Geng, X.; Meng, L.; Xie, T.; Huang, L.; Yan, X.-H. HISEA−1: The First CBand SAR Miniaturized Satellite for Ocean and Coastal Observation. Remote Sens. 2021, 13, 2076. [Google Scholar] [CrossRef]
- Xu, P.; Li, Q.; Zhang, B.; Wu, F.; Zhao, K.; Du, X.; Yang, C.; Zhong, R. On-board real-time ship detection in HISEA-1 SAR images based on CFAR and lightweight deep learning. Remote Sens. 2021, 13, 1995. [Google Scholar] [CrossRef]
- Lv, S.; Meng, L.; Edwing, D.; Xue, S.; Geng, X.; Yan, X.-H. High-Performance Segmentation for Flood Mapping of HISEA-1 SAR Remote Sensing Images. Remote Sens. 2022, 14, 5504. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, Q.; Yan, X.; Ren, W. HISEA−1: China’s First Miniaturized Commercial C-Band SAR Satellite. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4133–4136. [Google Scholar]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.-F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Pramudya, F.S.; Pan, J.; Devlin, A.T.; Lin, H. Enhanced estimation of significant wave height with dual-polarization Sentinel-1 SAR imagery. Remote Sens. 2021, 13, 124. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yang, J.; Ren, L.; Zhu, J.; Yuan, X.; Xie, C. Empirical algorithm for significant wave height retrieval from wave mode data provided by the Chinese satellite Gaofen-3. Remote Sens. 2018, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Sheng, Y.; Sun, J. Preliminary assessment of wind and wave retrieval from Chinese Gaofen-3 SAR imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef] [Green Version]
- Bruck, M.; Lehner, S. TerraSAR-X/TanDEM-X sea state measurements using the XWAVE algorithm. Int. J. Remote Sens. 2015, 36, 3890–3912. [Google Scholar] [CrossRef]
- Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J. Geophys. Res. Ocean. 1998, 103, 7833–7846. [Google Scholar] [CrossRef]
- Johnsen, H.; Collard, F. Sentinel-1 Ocean Swell Wave Spectra (OSW) Algorithm Definition; Tech. Rep. 13; Northern Research Institute (NORUT): Tromsø, Norway, 2009. [Google Scholar]
- Johnsen, H.; Husson, R.; Vincent, P.; Hajduch, G. Sentinel-1 Ocean Swell Wave Spectra (OSW) Algorithm Definition. Issue 1.4, 17 December 2021. Available online: https://sentinel.esa.int/documents/247904/4766202/DI-MPC-IPF-OSW_1_4_OSWAlgorithmDefinition.pdf/92c301e6-d8e7-fb38-0706-bb4e521b8a76 (accessed on 28 April 2023).
- Portilla, J.; Ocampo-Torres, F.J.; Monbaliu, J. Spectral partitioning and identification of wind sea and swell. J. Atmos. Ocean. Technol. 2009, 26, 107–122. [Google Scholar] [CrossRef]
- Corcione, V.; Grieco, G.; Portabella, M.; Nunziata, F.; Migliaccio, M. A novel azimuth cutoff implementation to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3331–3340. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Han, G.; Ren, L.; Zheng, G.; Chen, P.; Zhang, H. Tropical Cyclone Wind Field Reconstruction and Validation Using Measurements from SFMR and SMAP Radiometer. Remote Sens. 2022, 14, 3929. [Google Scholar] [CrossRef]
Mode | Striping | Spotlight | Narrow ScanSAR | Extra ScanSAR |
---|---|---|---|---|
Swath/km | 20 | 5 × 5 | 50 | 100 |
Resolution/m | 3 | 1 | 10 | 20 |
Polarization | VV | VV | VV | VV |
0.04 | 0.17 | 0.86 | 0.11 | 0.24 | −1.74 |
Subscene | Cut-Off (m) | The Peak Direction (°) | Peak Wavelength (m) |
---|---|---|---|
A1 | 164 | 220.1 | 158 |
A2 | 155 | 230.0 | 167.6 |
A3 | 119 | 254.9 | 142.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Geng, X.; Meng, L.; Yan, X.-H. First Ocean Wave Retrieval from HISEA-1 SAR Imagery through an Improved Semi-Automatic Empirical Model. Remote Sens. 2023, 15, 3486. https://doi.org/10.3390/rs15143486
Sun H, Geng X, Meng L, Yan X-H. First Ocean Wave Retrieval from HISEA-1 SAR Imagery through an Improved Semi-Automatic Empirical Model. Remote Sensing. 2023; 15(14):3486. https://doi.org/10.3390/rs15143486
Chicago/Turabian StyleSun, Haiyang, Xupu Geng, Lingsheng Meng, and Xiao-Hai Yan. 2023. "First Ocean Wave Retrieval from HISEA-1 SAR Imagery through an Improved Semi-Automatic Empirical Model" Remote Sensing 15, no. 14: 3486. https://doi.org/10.3390/rs15143486
APA StyleSun, H., Geng, X., Meng, L., & Yan, X.-H. (2023). First Ocean Wave Retrieval from HISEA-1 SAR Imagery through an Improved Semi-Automatic Empirical Model. Remote Sensing, 15(14), 3486. https://doi.org/10.3390/rs15143486