A Transformer-Based Framework for Parameter Learning of a Land Surface Hydrological Process Model
Abstract
:1. Introduction
- This paper proposes an end-to-end, transformer-based deep learning architecture for hydrological model parameter calibration, named ParaFormer, for two different cases to efficiently generate optimal hydrological parameter combinations.
- We deploy an LSTM-based surrogate model that incorporates PBM parameters as training input to process the calibration parameters generated by ParaFormer. A transformer model with a multi-head self-attention mechanism is also deployed to learn the global spatiotemporal mapping of hydrological observation data to unobserved parameters.
- We conduct two experiments to evaluate our approach; the results demonstrate that the calibrated parameters by ParaFormer improve the performance of the hydrological models and reduce the uncertainty in land surface hydrological predictions compared to other methods.
2. Problem Statement
3. Method
3.1. Framework Description for Parameter Calibration
3.2. ParaFormer Network
4. Experiments
4.1. Data Description
4.2. Experimental Setup
5. Results
5.1. Optimization Performance
5.2. Spatial Patterns of Calibrated Parameters
5.3. Uncalibrated Variables
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons. Adv. Water Resour. 2017, 109, 236–252. [Google Scholar] [CrossRef]
- Ajami, N.K.; Gupta, H.; Wagener, T.; Sorooshian, S. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. J. Hydrol. 2004, 298, 112–135. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Pan, M.; Beck, H.E.; Fisher, C.K.; Beighley, R.E.; Kao, S.C.; Hong, Y.; Wood, E.F. In quest of calibration density and consistency in hydrologic modeling: Distributed parameter calibration against streamflow characteristics. Water Resour. Res. 2019, 55, 7784–7803. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Bastidas, L.; Sorooshian, S.; Shuttleworth, W.J.; Yang, Z. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. Atmos. 1999, 104, 19491–19503. [Google Scholar] [CrossRef] [Green Version]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wu, S.J.; Lien, H.C.; Chang, C.H. Calibration of a conceptual rainfall–runoff model using a genetic algorithm integrated with runoff estimation sensitivity to parameters. J. Hydroinform. 2012, 14, 497–511. [Google Scholar] [CrossRef]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.C.; Dandy, G.C.; Gibbs, M.S.; Keedwell, E.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Duan, Y.; Cui, J. Calibration of parameters in soil moisture equation with shuffled complex evolution algorithm. Chin. J. Atmos. Sci. 2013, 37, 971–982. (In Chinese) [Google Scholar]
- Duan, Q.; Di, Z.; Quan, J.; Wang, C.; Gong, W.; Gan, Y.; Ye, A.; Miao, C.; Miao, S.; Liang, X.; et al. Automatic model calibration: A new way to improve numerical weather forecasting. Bull. Am. Meteorol. Soc. 2017, 98, 959–970. [Google Scholar]
- Gu, H.; Xu, Y.P.; Ma, D.; Xie, J.; Liu, L.; Bai, Z. A surrogate model for the Variable Infiltration Capacity model using deep learning artificial neural network. J. Hydrol. 2020, 588, 125019. [Google Scholar] [CrossRef]
- Wang, C.; Duan, Q.; Gong, W.; Ye, A.; Di, Z.; Miao, C. An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environ. Model. Softw. 2014, 60, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lu, W.; Bian, J.; An, Y. Surrogate model of numerical simulation model of groundwater based on wavelet neural network. China Environ. Sci. 2015, 35, 139–146. [Google Scholar]
- Kim, T.; Yang, T.; Gao, S.; Zhang, L.; Ding, Z.; Wen, X.; Gourley, J.J.; Hong, Y. Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: A case study of four watersheds with different hydro-climatic regions across the CONUS. J. Hydrol. 2021, 598, 126423. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 115651. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C. Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel. J. Hydrol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Fang, K.; Pan, M.; Shen, C. The value of SMAP for long-term soil moisture estimation with the help of deep learning. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2221–2233. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.K.; Hochreiter, S.; Nearing, G.S. Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Fang, K.; Shen, C. Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales. Water Resour. Res. 2020, 56, e2019WR026793. [Google Scholar] [CrossRef]
- Physics-Constrained Machine Learning of Evapotranspiration. Geophys. Res. Lett. 2019, 46, 14496–14507. [CrossRef]
- Pokhrel, P.; Gupta, H.V.; Wagener, T. A spatial regularization approach to parameter estimation for a distributed watershed model. Water Resour. Res. 2008, 44, 292–307. [Google Scholar] [CrossRef]
- Mizukami, N.; Clark, M.P.; Newman, A.J.; Wood, A.W.; Gutmann, E.D.; Nijssen, B.; Rakovec, O.; Samaniego, L. Towards seamless large-domain parameter estimation for hydrologic models. Water Resour. Res. 2017, 53, 8020–8040. [Google Scholar] [CrossRef]
- Tsai, W.P.; Feng, D.; Pan, M.; Beck, H.; Lawson, K.; Yang, Y.; Liu, J.; Shen, C. From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. Nat. Commun. 2021, 12, 5988. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev. 2018, 11, 3481–3496. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Koster, R.D.; Dong, J.; Berg, A.A. Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation. J. Hydrometeorol. 2004, 5, 430–442. [Google Scholar] [CrossRef]
- Naeini, M.R.; Analui, B.; Gupta, H.V.; Duan, Q.; Sorooshian, S. Three decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: Review and applications. Sci. Iran. 2019, 26, 2015–2031. [Google Scholar]
Parameters | Details | Range |
---|---|---|
ds | Fraction of maximum base flow velocity where non-linear base flow begins. | [0, 7.6] |
dsmax | Maximum base flow velocity. | [0, 10.8] |
expt1 | variation of saturated hydraulic conductivity with soil moisture. | [0, 4.6] |
infilt | The variable infiltration curve index. | [0, 1] |
ws | fraction of maximum soil moisture content above which non-linear baseflow occurs. | [0, 1] |
DAS-S4 | DAS-S8 | DAS-S8NG | |||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | PCC | NSE | RMSE | PCC | NSE | RMSE | PCC | NSE | |
SCE-UA | 0.048 | 0.523 | 0.150 | 0.047 | 0.559 | 0.104 | 0.089 | 0.589 | −1.665 |
FFN | 0.046 | 0.574 | 0.192 | 0.046 | 0.591 | 0.172 | 0.055 | 0.591 | −0.014 |
LSTM | 0.044 | 0.618 | 0.211 | 0.046 | 0.600 | 0.169 | 0.049 | 0.600 | 0.158 |
ParaFomer | 0.035 | 0.616 | 0.203 | 0.043 | 0.648 | 0.216 | 0.055 | 0.640 | −0.003 |
ParaFormer | 0.033 | 0.668 | 0.263 | 0.038 | 0.653 | 0.258 | 0.048 | 0.649 | 0.276 |
DAS-S4 | DAS-S8 | |||||
---|---|---|---|---|---|---|
RMSE | PCC | NSE | RMSE | PCC | NSE | |
VIC | 169.665 | 0.621 | 0.395 | 152.989 | 0.741 | 0.440 |
SCE-UA | 167.263 | 0.695 | 0.371 | 164.055 | 0.687 | 0.360 |
FFN | 161.859 | 0.641 | 0.336 | 146.572 | 0.732 | 0.501 |
LSTM | 151.178 | 0.721 | 0.486 | 138.997 | 0.754 | 0.551 |
ParaFomer | 152.536 | 0.682 | 0.391 | 140.965 | 0.734 | 0.548 |
ParaFormer | 147.589 | 0.797 | 0.510 | 127.020 | 0.793 | 0.615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Lu, Y. A Transformer-Based Framework for Parameter Learning of a Land Surface Hydrological Process Model. Remote Sens. 2023, 15, 3536. https://doi.org/10.3390/rs15143536
Li K, Lu Y. A Transformer-Based Framework for Parameter Learning of a Land Surface Hydrological Process Model. Remote Sensing. 2023; 15(14):3536. https://doi.org/10.3390/rs15143536
Chicago/Turabian StyleLi, Klin, and Yutong Lu. 2023. "A Transformer-Based Framework for Parameter Learning of a Land Surface Hydrological Process Model" Remote Sensing 15, no. 14: 3536. https://doi.org/10.3390/rs15143536
APA StyleLi, K., & Lu, Y. (2023). A Transformer-Based Framework for Parameter Learning of a Land Surface Hydrological Process Model. Remote Sensing, 15(14), 3536. https://doi.org/10.3390/rs15143536