An Improved Doppler-Aided Smoothing Code Algorithm for BeiDou-2/BeiDou-3 un-Geostationary Earth Orbit Satellites in Consideration of Satellite Code Bias
Abstract
1. Introduction
2. Methods
2.1. Basic Model of Carrier Smoothed Code
2.2. Error Analysis of Carrier Smoothed Code
2.3. Empirical Correction of Multipath Effect in the Satellite-End
2.4. Basic Model of Doppler Smoothed Code
2.5. Refined Model of Doppler Smoothed Code
3. Results
3.1. Datasets
3.2. Elevation-Dependent SCB Correction Model for BDS Satellites
3.3. Reconstruction and Analysis of MP Deviations with Corrected Code Measurements
3.4. Statistic and Analysis of Code Measurements with Epoch-Difference Method
3.5. Positioning Accuracy of SPP with BDS-2 Code Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System: Theory and Practice, 5th ed.; Springer: New York, NY, USA, 2001; pp. 181–188. [Google Scholar]
- Xu, G.; Xu, Y. Parameterization and algorithms of GPS data processing. In GPS Theory, Algorithms and Applications, 3rd ed.; Springer: New York, NY, USA, 2016; pp. 291–300. [Google Scholar]
- Won, J.H.; Pany, T. Signal processing. In Springer Handbook of Global Navigation Satellite Systems, 1st ed.; Teunissen, P.J.G., Montenbruck, O., Eds.; Springer: New York, NY, USA, 2017; pp. 428–434. [Google Scholar]
- Hatch, R. The synergism of GPS code and carrier measurements. In Proceedings of the 3rd International Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, NM, USA, 8–12 February 1982. [Google Scholar]
- Hatch, R. Dynamic differential GPS at the centimeter level. In Proceedings of the 4th International Geodetic Symposium on Satellite Positioning, Austin, TX, USA, 28 April–2 May 1986. [Google Scholar]
- Hwang, P.Y.; McGraw, G.A.; Bader, J.R. Enhanced differential GPS carrier-smoothed code processing using dual-frequency measurements. Navigation 1999, 46, 127–138. [Google Scholar] [CrossRef]
- Bisnath, S.B.; Langley, R.B. High-precision, kinematic positioning with a single GPS receiver. Navigation 2002, 49, 161–169. [Google Scholar] [CrossRef]
- Park, B.; Sohn, K.; Kee, C. Optimal Hatch filter with an adaptive smoothing window width. J. Navig. 2008, 61, 435–454. [Google Scholar] [CrossRef]
- Gunther, C.; Henkel, P. Reduced-noise ionosphere-free carrier smoothed code. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 323–334. [Google Scholar] [CrossRef]
- Gao, X.; Yang, Z.; Du, Y.; Yang, B. An improved real-time cycle slip correction algorithm based on Doppler-aided signals for BDS triple-frequency measurements. Adv. Space Res. 2021, 67, 223–233. [Google Scholar] [CrossRef]
- Geng, J.; Jiang, E.; Li, G.; Xin, S.; Wei, N. An Improved Hatch Filter Algorithm towards SubMeter Positioning Using only Android Raw GNSS Measurements without External Augmentation Corrections. Remote Sens. 2019, 11, 1679. [Google Scholar] [CrossRef]
- Cheng, P. Remarks on Doppler-aided smoothing of code ranges. J. Geod. 1999, 73, 23–28. [Google Scholar] [CrossRef]
- Kubo, N. Advantage of velocity measurements on instantaneous RTK positioning. GPS Solut. 2009, 13, 271–280. [Google Scholar] [CrossRef]
- Chen, C.; Chang, G.; Luo, F.; Zhang, S. Dual-frequency carrier smoothed code filtering with dynamical ionospheric delay modeling. Adv. Space Res. 2019, 63, 857–870. [Google Scholar] [CrossRef]
- Bruton, A.M.; Glennie, C.L.; Schwarz, K.P. Differentiation for high-precision GPS velocity and. acceleration determination. GPS Solut. 1999, 2, 7–21. [Google Scholar] [CrossRef]
- Lee, H.; Rizos, C.; Jee, G.I. Position domain filtering and range domain filtering for carrier-smoothed-code DGNSS: An analytical comparison. IEE Proc. Radar Sonar Navig. 2005, 152, 271–276. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Grenfell, R.; Deakin, R. Short note: On the relativistic Doppler effect for precise velocity determination using GPS. J. Geod. 2006, 80, 104–110. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, B.; Guo, F.; Du, C. Influence of clock jump on the velocity and acceleration estimation with a single GPS receiver based on carrier-phase-derived Doppler. GPS Solut. 2013, 17, 549–559. [Google Scholar] [CrossRef]
- Bahrami, M.; Ziebart, M. A Kalman filter-based Doppler-smoothing of code pseudoranges in GNSS-challenged environments. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 19–23 September 2011. [Google Scholar]
- Zhou, Z.; Li, B. Optimal Doppler-aided smoothing strategy for GNSS navigation. GPS Solut. 2017, 21, 197–210. [Google Scholar] [CrossRef]
- Zhang, K.; Jiao, W.; Wang, L.; Li, Z.; Li, J.; Zhou, K. Smart-RTK: Multi-GNSS kinematic positioning approach on android smart devices with Doppler-smoothed-code filter and constant acceleration model. Adv. Space Res. 2019, 64, 1662–1674. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Z.; Liu, C.; Xu, J.; Li, S.; Zhou, K. Assessment of the performance of carrier-phase and Doppler smoothing code for low-cost GNSS receiver positioning. Results Phys. 2020, 19, 103574. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Wang, E.; Chen, J.; Feng, S.; Wang, D.; Dai, L. Advances in BeiDou Navigation Satellite System (BDS) and satellite navigation augmentation technologies. Satell. Navig. 2020, 1, 12. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, X.; Jia, X.; Sun, B. Development trends of the national secure PNT system based on BDS. Sci. China Earth Sci. 2023, 66, 929–938. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O.; Sleewaegen, J.M.; Huisman, L.; Teunissen, P.J.G. Characterization of COMPASS M-1 signals. GPS Solut. 2012, 16, 117–126. [Google Scholar] [CrossRef]
- Wanninger, L.; Beer, S. BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solut. 2015, 19, 639–648. [Google Scholar] [CrossRef]
- Lei, W.; Wu, G.; Tao, X.; Bian, L.; Wang, L. BDS satellite-induced code multipath: Mitigation and assessment in new-generation IOV satellites. Adv. Space Res. 2017, 60, 2672–2679. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Liu, W. Mitigating BeiDou Satellite-Induced Code Bias: Taking into Account the Stochastic Model of Corrections. Sensors 2016, 16, 909. [Google Scholar] [CrossRef]
- Lou, Y.; Gong, X.; Gu, S.; Zheng, F.; Feng, Y. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines. GPS Solut. 2017, 21, 177–186. [Google Scholar] [CrossRef]
- Zou, X.; Li, Z.; Li, M.; Tang, W.; Deng, C.; Chen, L.; Wang, C.; Shi, C. Modeling BDS pseudorange variations and models assessment. GPS Solut. 2017, 21, 1661–1668. [Google Scholar] [CrossRef]
- Pan, L.; Guo, F.; Ma, F. An improved bds satellite-induced code bias correction model considering the consistency of multipath combinations. Remote Sens. 2018, 10, 1189. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Lu, C.; Wu, M.; Pan, L. A comprehensive analysis of satellite-induced code bias for BDS-3 satellites and signals. Adv. Space Res. 2019, 639, 2822–2835. [Google Scholar] [CrossRef]
- McGraw, G.A. Generalized divergence-free carrier smoothing with applications to dual frequency differential GPS. Navigation 2009, 56, 115–122. [Google Scholar] [CrossRef]
- Shu, B.; Liu, H.; Xu, L.; Gong, X.; Qian, C.; Zhang, M.; Zhang, R. Analysis of satellite-induced factors affecting the accuracy of the BDS satellite differential code bias. GPS Solut. 2017, 21, 905–916. [Google Scholar] [CrossRef]
- Zhou, R.; Hu, Z.; Zhao, Q.; Li, P.; Wang, W.; He, C.; Cai, C.; Pan, Z. Elevation-dependent pseudorange variation characteristics analysis for the new-generation BeiDou satellite navigation system. GPS Solut. 2018, 22, 60. [Google Scholar] [CrossRef]
BDS-2 PRN | Orbit Type | Launch Date | RMS of Raw Code | RMS of Corrected Code | Improvement | |||
---|---|---|---|---|---|---|---|---|
B1 | B3 | B1 | B3 | B1 | B3 | |||
C06 | IGSO | 1 August 2010 | 0.21 | 0.11 | 0.14 | 0.07 | 33.3% | 36.4% |
C07 | IGSO | 18 December 2010 | 0.16 | 0.09 | 0.14 | 0.06 | 12.5% | 33.3% |
C09 | IGSO | 27 July 2011 | 0.19 | 0.12 | 0.17 | 0.07 | 10.5% | 41.7% |
C10 | IGSO | 2 December 2011 | 0.22 | 0.09 | 0.16 | 0.06 | 27.3% | 33.3% |
C13 | IGSO | 30 March 2016 | 0.21 | 0.18 | 0.14 | 0.06 | 33.3% | 66.7% |
C16 | IGSO | 10 July 2018 | 0.21 | 0.13 | 0.15 | 0.07 | 28.6% | 46.2% |
C39 | IGSO | 25 June 2019 | 0.21 | 0.07 | 0.19 | 0.05 | 9.5% | 28.6% |
C40 | IGSO | 5 November 2019 | 0.13 | 0.06 | 0.13 | 0.06 | 0 | 0 |
C11 | MEO | 30 April 2012 | 0.54 | 0.30 | 0.16 | 0.21 | 70.4% | 30.0% |
C12 | MEO | 30 April 2012 | 0.45 | 0.25 | 0.27 | 0.17 | 40.0% | 32.0% |
C14 | MEO | 19 September 2012 | 0.35 | 0.18 | 0.26 | 0.14 | 25.7% | 22.2% |
C19 | MEO | 5 November 2017 | 0.19 | 0.06 | 0.19 | 0.05 | 0 | 16.7% |
C26 | MEO | 29 July 2018 | 0.22 | 0.11 | 0.16 | 0.08 | 27.3% | 27.3% |
C29 | MEO | 30 March 2018 | 0.29 | 0.12 | 0.27 | 0.11 | 6.9% | 8.3% |
C33 | MEO | 19 September 2018 | 0.30 | 0.12 | 0.26 | 0.09 | 13.3% | 25.0% |
C44 | MEO | 23 November 2019 | 0.19 | 0.13 | 0.19 | 0.12 | 0 | 7.7% |
Interval (Second) | RMS of RDSC | RMS of RDSC-SCB | 3D Improvement Rate (%) | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
1 | 1.153 | 2.269 | 4.162 | 1.111 | 2.312 | 3.693 | 0.68/8.46 |
15 | 1.133 | 2.256 | 4.122 | 1.186 | 2.299 | 3.716 | 1.57/6.20 |
30 | 1.139 | 2.262 | 4.159 | 1.195 | 2.286 | 3.752 | 0.81/5.44 |
45 | 1.144 | 2.266 | 4.172 | 1.200 | 2.289 | 3.773 | 0.60/5.13 |
60 | 1.144 | 2.267 | 4.173 | 1.203 | 2.291 | 3.772 | 0.45/5.19 |
75 | 1.147 | 2.270 | 4.186 | 1.207 | 2.309 | 3.781 | 0.37/5.00 |
90 | 1.148 | 2.268 | 4.185 | 1.206 | 2.303 | 3.815 | 0.35/4.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Ma, Z.; Jia, L.; Pan, L. An Improved Doppler-Aided Smoothing Code Algorithm for BeiDou-2/BeiDou-3 un-Geostationary Earth Orbit Satellites in Consideration of Satellite Code Bias. Remote Sens. 2023, 15, 3549. https://doi.org/10.3390/rs15143549
Gao X, Ma Z, Jia L, Pan L. An Improved Doppler-Aided Smoothing Code Algorithm for BeiDou-2/BeiDou-3 un-Geostationary Earth Orbit Satellites in Consideration of Satellite Code Bias. Remote Sensing. 2023; 15(14):3549. https://doi.org/10.3390/rs15143549
Chicago/Turabian StyleGao, Xiao, Zongfang Ma, Luxiao Jia, and Lin Pan. 2023. "An Improved Doppler-Aided Smoothing Code Algorithm for BeiDou-2/BeiDou-3 un-Geostationary Earth Orbit Satellites in Consideration of Satellite Code Bias" Remote Sensing 15, no. 14: 3549. https://doi.org/10.3390/rs15143549
APA StyleGao, X., Ma, Z., Jia, L., & Pan, L. (2023). An Improved Doppler-Aided Smoothing Code Algorithm for BeiDou-2/BeiDou-3 un-Geostationary Earth Orbit Satellites in Consideration of Satellite Code Bias. Remote Sensing, 15(14), 3549. https://doi.org/10.3390/rs15143549