A Spatial and Temporal Evolution Analysis of Desert Land Changes in Inner Mongolia by Combining a Structural Equation Model and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.2.1. Multispectral Image Data
2.2.2. Meteorological and Socio-Economic Data
3. Model Construction
3.1. U-Net
3.2. Deformable Convolution
3.3. Y-Net
3.4. Performance Evaluation Indicators
4. Experiments and Analysis
4.1. Desert Land Intelligent Interpretation Dataset
4.2. Model Training
4.3. Model Comparison
5. Discussion
5.1. Weighted Band Combination Methods
5.2. Multiyear Changes in Desert Land Area
5.3. Driving Force Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neely, C.; Bunning, S. Review of evidence on drylands pastoral systems and climate change. Land Water Discuss. Pap. 2009, 6, 103. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development, 70/1. A/RES/; United Nations: New York, NY, USA, 2015. [Google Scholar]
- UNCCD. The Global Land Outlook, 1st ed.; United Nations Convention to Combat Desertification: Bonn, Germany, 2017. [Google Scholar]
- PNUMA. Status of Desertification and Implementation of the United Nations Plan of Action to Combat Desertification: Report of the Executive Director. 1991. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=4dc7173b5b02abe2fbc0cebcb0c92331&site=xueshu_se (accessed on 8 June 2023).
- Wang, T.; Yan, C.; Song, X.; Xie, J. Monitoring recent trends in the area of aeolian desertified land using Landsat images in China’s Xinjiang region. ISPRS J. Photogramm. Remote. Sens. 2012, 68, 184–190. [Google Scholar] [CrossRef]
- Wang, H.; Ma, M.; Geng, L. Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin. Nat. Hazards 2015, 79, 1753–1772. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Feng, Z.D.; Kung, H.T.; Johnson, V.C.; Ding, J.L.; Tashpolat, N.; Sawut, M.; Gui, D.W. Spatio-Temporal Patterns of Land Use/Cover Changes Over the Past 20 Years in the Middle Reaches of the Tarim River, Xinjiang, China. Land Degrad. Dev. 2015, 26, 284–299. [Google Scholar] [CrossRef]
- Fathizad, H.; Ardakani, M.A.H.; Mehrjardi, R.T.; Sodaiezadeh, H. Evaluating desertification using remote sensing technique and object-oriented classification algorithm in the Iranian central desert. J. Afr. Earth Sci. 2018, 145, 115–130. [Google Scholar] [CrossRef]
- Levin, N.; Ben-Dor, E.; Karnieli, A. Topographic information of sand dunes as extracted from shading effects using Landsat images. Remote Sens. Environ. 2004, 90, 190–209. [Google Scholar] [CrossRef]
- Rivera-Marin, D.; Dash, J.; Ogutu, B. The use of remote sensing for desertification studies: A review. J. Arid. Environ. 2022, 206, 104829. [Google Scholar] [CrossRef]
- Helld´en, U.; Tottrup, C. Regional desertification: A global synthesis. Glob. Planet. Chang. 2008, 64, 169–176. [Google Scholar] [CrossRef]
- Duan, H.C.; Wang, T.; Xue, X.; Liu, S.L.; Guo, J. Dynamics of aeolian desertification and its driving forces in the Horqin desert land, Northern China. Environ. Monit. Assess. 2014, 186, 6083–6096. [Google Scholar] [CrossRef] [PubMed]
- Chasek, P.; Akhtar-Schuster, M.; Orr, B.J.; Luise, A.; Ratsimba, H.R.; Safriel, U. Land degradation neutrality: The science-policy interface from the UNCCD to national implementation. Environ. Sci. Policy 2019, 92, 182–190. [Google Scholar] [CrossRef]
- Hanan, N.P.; Prevost, Y.; Diouf, A.; Diallo, O. Assessment of desertification around deep wells in the Sahel using satellite imagery. J. Appl. Ecol. 1991, 28, 173–186. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Guo, Y.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Li, J.; Zhao, L.; Xu, B.; Yang, X.; Jin, Y.; Gao, T.; Yu, H.; Zhao, F.; Ma, H.; Qin, Z. Spatiotemporal variations in grassland desertification based on Landsat images and spectral mixture analysis in Yanchi county of Ningxia, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 4393–4402. [Google Scholar] [CrossRef]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460. [Google Scholar]
- Mikulane, S.; Siegmund, A.; del Río, C.; Koch, M.A.; Osses, P.; García, J.-L. Remote sensing based mapping of Tillandsia—A semi-automatic detection approach in the hyperarid coastal Atacama Desert, northern Chile. J. Arid. Environ. 2022, 205, 104821. [Google Scholar] [CrossRef]
- Zhang, D.; Gade, M.; Zhang, J. SOFNet: SAR-optical fusion network for land cover classification. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2409–2412. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, F.; Wu, F.; Xu, J.; Gao, G.; Ge, Q.; Jing, X.-Y. Adaptive deformable convolutional network. Neurocomputing 2021, 453, 853–864. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Sun, H.; Yu, L. Deep image compression based on multi-scale deformable convolution. J. Vis. Commun. Image Represent. 2022, 87, 103573. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Lu, J.; Wang, H.; Feng, Y.; Shi, C.; Li, D.; Zhao, R. A lightweight dead fish detection method based on deformable convolution and YOLOV4. Comput. Electron. Agric. 2022, 198, 107098. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Z.; Li, J.; Gao, H.; Lu, W.; Hu, P.; Feng, L. Multi-organ segmentation network for abdominal CT images based on spatial attention and deformable convolution. Expert Syst. Appl. 2023, 211, 118625. [Google Scholar] [CrossRef]
- Bai, Z.; Han, L.; Jiang, X.; Liu, M.; Li, L.; Liu, H.; Lu, J. Spatiotemporal evolution of desertification based on integrated remote sensing indices in Duolun County, Inner Mongolia. Ecol. Inform. 2022, 70, 101750. [Google Scholar]
- Gao, F.; Li, Y.; Zhang, P.; Zhai, Y.; Zhang, Y.; Yang, Y.; An, Y. A high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation. Comput. Geosci. 2022, 168, 105219. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Wang, N.; Cheng, J.; Zhang, H.; Cao, H.; Liu, J. Application of U-net model in water extraction from high-resolution remote sensing images. Remote Sens. Land Resour. 2020, 32, 35–42. [Google Scholar]
- Zhang, D.; Gade, M.; Zhang, J. SOF-UNet: SAR and Optical Fusion Unet for Land Cover Classification. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Pucino, N.; Kennedy, D.M.; Young, M.; Ierodiaconou, D. Assessing the accuracy of Sentinel-2 instantaneous subpixel shorelines using synchronous UAV ground truth surveys. Remote Sens. Environ. 2022, 282, 113293. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, H.; Luo, G. Extraction and counting of Populus euphratica tree canopy from UAV images with integrated U-Net method. Remote Sens. Technol. Appl. 2019, 34, 939–949. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Wu, Y.; Zhang, J.; Li, Y.; Huang, K. Research on Building Cluster Recognition Based on Improved U-Net. Remote Sens. Land Resour. 2021, 33, 1. [Google Scholar]
- Jin, Q.; Meng, Z.; Pham, T.D.; Chen, Q.; Wei, L.; Su, R. DUNet: A deformable network for retinal vessel segmentation. Knowl. Based Syst. 2019, 178, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Metwalli, M.R.; Nasr, A.H.; Allah, O.S.F.; El-Rabaie, S. Image fusion based on principal component analysis and high-pass filter. In Proceedings of the 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, 14–16 December 2009. [Google Scholar]
- Pandit, V.R.; Bhiwani, R.J. Image Fusion in Remote Sensing Applications: A Review. Int. J. Comput. Appl. 2015, 120, 22–32. [Google Scholar]
- Liu, S.; Zheng, Y.; Du, Q.; Samat, A.; Tong, X.; Dalponte, M. A novel feature fusion approach for VHR remote sensing image classification. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 2020, 14, 464–473. [Google Scholar] [CrossRef]
- Merembeck, B.F.; Borden, F.Y.; Podwysocki, M.H.; Applegate, D.N. Application of canonical analysis to multispectral scanner data. In Proceedings of the 14th Annual Symposium on Computer Applications in the Mineral Industries, Society of Mining Engineers, American Institute in Mining, Metallurgical and Petroleum Engineers, New York, NY, USA, 24 March 1977. [Google Scholar]
- Taylor, M.M. Principal components color display of ERTS imagery. In Third Earth Resources Technology Satellite Symposium; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Sheffield, C. Selecting band combinations from multispectral data. Photogramm. Eng. Remote Sens. 1985, 51, 681–687. [Google Scholar]
- Chavez, P.S.; Bowell, J.A. Image processing techniques for Thematic Mapper data. Proc. ASPRS-ACSM Tech. Pap. 1984, 2, 728–742. [Google Scholar]
- Duan, X. Research on prediction of slope displacement based on a weighted combination forecasting model. Results Eng. 2023, 18, 101013. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J. Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118553. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Chen, Y.; Linderman, M.; Mouazen, A.M.; Liu, Y.; Guo, L.; Yu, L.; Liu, Y.; Cheng, H.; et al. Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil Tillage Res. 2020, 199, 104589. [Google Scholar] [CrossRef]
- Paisley, E.C.; Lancaster, N.; Gaddis, L.R.; Greeley, R. Discrimination of active and inactive sand from remote sensing: Kelso dunes, Mojave desert, California. Remote. Sens. Environ. 1991, 37, 153–166. [Google Scholar] [CrossRef]
- Zicari, P.; Folino, G.; Guarascio, M.; Pontieri, L. Discovering accurate deep learning based predictive models for automatic customer support ticket classification. In Proceedings of the SAC’21: The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, 22–26 March 2021. [Google Scholar]
- Niño-Adan, I.; Manjarres, D.; Landa-Torres, I.; Portillo, E. Feature weighting methods: A review. Expert Syst. Appl. 2021, 184, 115424. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Z. Identifying land restoration regions and their driving mechanisms in inner Mongolia, China from 1981 to 2010. J. Arid. Environ. 2019, 167, 79–86. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, K.; Liu, X.; Li, J.; Xia, M. Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data. Geogr. Sustain. 2023, 4, 100–111. [Google Scholar] [CrossRef]
- Liang, P.; Yang, X. Landscape spatial patterns in the Maowusu (Mu Us) desert land, northern China and their impact factors. Catena 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, B.; Song, W.; Dai, J.; Lan, X.; Chang, X. Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling. Sustainability 2023, 15, 10808. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Yan, C.; Kang, W.; Chen, X.; Guo, Z. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Kozuchowski, K. Contemporary changes of climate in Poland: Trends and variation in thermal and solar conditions related to plant vegetation. Pol. J. Ecol. 2005, 53, 283–297. [Google Scholar]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.-P.; Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 2012, 27, 120–127. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, T.; Zhao, Z.; Sun, C.; Liu, J.; Shao, Q.; Fan, J.; Wang, J. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manag. 2013, 117, 268–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, W.; Shi, P.; Zhou, L.; Wang, X.; Li, Z.; Pang, S.; Xie, B. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China. Acta Geograph. Sin. 2020, 75, 1948–1965. [Google Scholar]
Band | Precision % | Recall % | F1-Score % |
---|---|---|---|
B1 | 76.293 | 80.651 | 78.411 |
B2 | 68.789 | 63.503 | 66.040 |
B3 | 76.888 | 70.175 | 73.378 |
B4 | 83.870 | 81.898 | 82.872 |
B5 | 86.710 | 80.361 | 83.414 |
B6 | 80.267 | 72.169 | 76.003 |
B7 | 73.594 | 67.692 | 70.518 |
B1 | B4 | B5 | Original-B5B4B1 | W-B5B4B1 | Label | |
---|---|---|---|---|---|---|
Normal images | ||||||
Low light images | ||||||
Cloud interference | ||||||
Complex background | ||||||
Negative samples |
Original Image | W-Image | U-Net | Y-Net | W-U-Net | W-Y-Net | True Value |
---|---|---|---|---|---|---|
Model | IoU % | Precision % | Recall % | F1-Score % | Calculation Time (s) |
---|---|---|---|---|---|
W-U-Net | 85.2 | 90.0 | 88.4 | 89.2 | 347 |
W-Y-Net | 88.3 | 96.1 | 94.1 | 95.1 | 386 |
U-Net | 73.3 | 89.1 | 78.7 | 83.6 | 281 |
Y-Net | 77.2 | 91.8 | 83.2 | 87.3 | 318 |
Factors | LD | P | RH | Adi | Evp | LS | CL | PD | T |
---|---|---|---|---|---|---|---|---|---|
Comprehensive path coefficients | 0.199 | 0.646 | 0.615 | 0.367 | 0.259 | 0.253 | 0.545 | 0.19 | 0.181 |
Pearson correlation coefficients | 0.408 | 0.104 | 0.100 | 0.313 | 0.136 | 0.046 | 0.317 | 0.422 | 0.100 |
Factor | Direct | Indirect | Total |
---|---|---|---|
Human activities | 0.367 | 0.025 | 0.392 |
Climate | −0.565 | 0.315 | −0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Zhang, B.; Zhu, H.; Song, W.; Ren, D.; Dai, J. A Spatial and Temporal Evolution Analysis of Desert Land Changes in Inner Mongolia by Combining a Structural Equation Model and Deep Learning. Remote Sens. 2023, 15, 3617. https://doi.org/10.3390/rs15143617
Chang X, Zhang B, Zhu H, Song W, Ren D, Dai J. A Spatial and Temporal Evolution Analysis of Desert Land Changes in Inner Mongolia by Combining a Structural Equation Model and Deep Learning. Remote Sensing. 2023; 15(14):3617. https://doi.org/10.3390/rs15143617
Chicago/Turabian StyleChang, Xinyue, Bing Zhang, Hongbo Zhu, Weidong Song, Dongfeng Ren, and Jiguang Dai. 2023. "A Spatial and Temporal Evolution Analysis of Desert Land Changes in Inner Mongolia by Combining a Structural Equation Model and Deep Learning" Remote Sensing 15, no. 14: 3617. https://doi.org/10.3390/rs15143617