Interference Mitigation Method for Millimeter-Wave Frequency-Modulation Continuous-Wave Radar Based on Outlier Detection and Variational Modal Decomposition
Abstract
:1. Introduction
2. Basic Principles
2.1. Working Principle
2.2. Mutual Interference
2.3. Variational Modal Decomposition
Algorithm 1: The Main Process of VMD |
1: Initialize 2: Update 3: Update : 4: Update : 5: Dual ascent: 6: Until convergence: . |
3. Interference Mitigation Method
3.1. Outlier Detection and Amplitude Limiting
3.2. Pearson Correlation Coefficient
3.3. The Main Process of the Proposed Method
- First, calculate the mean value of the input raw data and perform first-order differential processing;
- Perform outlier detection on the differenced data and mark the interfered samples;
- Limit the original data with an outlier marker and obtain the signal after amplitude repair;
- Set initial parameters of VMD and obtain multiple IMFs after VMD processing;
- Calculate the Pearson correlation coefficient of each IMF with the signal after amplitude repair;
- Select the IMF with the maximum Pearson correlation coefficient as the reconstructed signal component.
4. Simulation and Experimental Results
4.1. Simulation Experiment Results
4.2. Comparison with Other Methods
4.3. Actual Measurement Experiment and Analysis
5. Discussion
5.1. Computational Complexity
5.2. Performance under Different Noise Levels
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aydogdu, C.; Keskin, M.F.; Carvajal, G.K.; Eriksson, O.; Hellsten, H.; Herbertsson, H.; Nilsson, E.; Rydstrom, M.; Vanas, K.; Wymeersch, H. Radar Interference Mitigation for Automated Driving: Exploring Proactive Strategies. IEEE Signal Process. Mag. 2020, 37, 72–84. [Google Scholar] [CrossRef]
- Sevimli, R.A.; Üçüncü, M.; Koç, A. Graph signal processing based object classification for automotive RADAR point clouds. Digit. Signal Process. 2023, in press. [CrossRef]
- He, J.; Yin, F.; So, H.C. A Framework for Millimeter-Wave Multi-User SLAM and Its Low-Cost Realization. Signal Process. 2023, 209, 109018. [Google Scholar] [CrossRef]
- Shi, G.; Huang, B.; Leung, A.K.; Ng, C.W.W.; Wu, Z.; Lin, H. Millimeter Slope Ratcheting from Multitemporal SAR Interferometry with a Correction of Coastal Tropospheric Delay: A Case Study in Hong Kong. Remote Sens. Environ. 2022, 280, 113148. [Google Scholar] [CrossRef]
- Wu, J.; Dahnoun, N. A Health Monitoring System with Posture Estimation and Heart Rate Detection Based on Millimeter-Wave Radar. Microprocess. Microsyst. 2022, 94, 104670. [Google Scholar] [CrossRef]
- Ma, Z.; Choi, J.; Yang, L.; Sohn, H. Structural Displacement Estimation Using Accelerometer and FMCW Millimeter Wave Radar. Mech. Syst. Signal Process. 2023, 182, 109582. [Google Scholar] [CrossRef]
- Hakobyan, G.; Yang, B. High-Performance Automotive Radar: A Review of Signal Processing Algorithms and Modulation Schemes. IEEE Signal Process. Mag. 2019, 36, 32–44. [Google Scholar] [CrossRef]
- Alland, S.; Stark, W.; Ali, M.; Hegde, M. Interference in Automotive Radar Systems: Characteristics, Mitigation Techniques, and Current and Future Research. IEEE Signal Process. Mag. 2019, 36, 45–59. [Google Scholar] [CrossRef]
- Bechter, J.; Sippel, C.; Waldschmidt, C. Bats-Inspired Frequency Hopping for Mitigation of Interference between Automotive Radars. In Proceedings of the 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), San Diego, CA, USA, 19–20 May 2016; pp. 1–4. [Google Scholar]
- Bechter, J.; Eid, K.; Roos, F.; Waldschmidt, C. Digital Beamforming to Mitigate Automotive Radar Interference. In Proceedings of the 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), San Diego, CA, USA, 19–20 May 2016; pp. 1–4. [Google Scholar]
- Schweizer, B.; Knill, C.; Werbunat, D.; Stephany, S.; Waldschmidt, C. Mutual Interference of Automotive OFDM Radars—Analysis and Countermeasures. IEEE J. Microw. 2021, 1, 950–961. [Google Scholar] [CrossRef]
- Sgammini, M.; Caizzone, S.; Hornbostel, A.; Meurer, M. Interference mitigation using a dual-polarized antenna array in a real environment. Navig. J. Inst. Navig. 2019, 66, 523–535. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Luo, J.; Che, M.; Wang, H.; Zhang, D. Potential of Reducing FMCW Radar Mutual-Interference Using Nonlinear FM Signals. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 2852–2855. [Google Scholar]
- Xu, Z.; Shi, Q. Interference Mitigation for Automotive Radar Using Orthogonal Noise Waveforms. IEEE Geosci. Remote Sens. Lett. 2018, 15, 137–141. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, M. An Interference Mitigation Technique for Automotive Millimeter Wave Radars in the Tunable Q-Factor Wavelet Transform Domain. IEEE Trans. Microw. Theory Technol. 2021, 69, 5270–5283. [Google Scholar] [CrossRef]
- Uysal, F. Synchronous and Asynchronous Radar Interference Mitigation. IEEE Access 2019, 7, 5846–5852. [Google Scholar] [CrossRef]
- Xu, Z.; Xue, S.; Wang, Y. Incoherent Interference Detection and Mitigation for Millimeter-Wave FMCW Radars. Remote Sens. 2022, 14, 4817. [Google Scholar] [CrossRef]
- Xu, Z. Bi-Level L1 Optimization-Based Interference Reduction for Millimeter Wave Radars. IEEE trans. Intell. Transp. Syst. 2023, 24, 728–738. [Google Scholar] [CrossRef]
- Talebi, S.P.; Werner, S.; Mandic, D.P. Complex-Valued Nonlinear Adaptive Filters with Applications in α-Stable Environments. IEEE Signal Process. Lett. 2019, 26, 1315–1319. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.H.; Kim, S.Y.; Park, C.G. Global Navigation Satellite System Interference Tracking and Mitigation Based on an Adaptive Fading Kalman Filter. IET Radar Sonar Navig. 2015, 9, 1030–1039. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.-Y.; Kim, S.-C. Mutual Interference Suppression Using Wavelet Denoising in Automotive FMCW Radar Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 887–897. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z.; Kang, Z.; Pan, Z. Short-Term Natural Gas Consumption Prediction Based on Volterra Adaptive Filter and Improved Whale Optimization Algorithm. Eng. Appl. Artif. Intell. 2020, 87, 103323. [Google Scholar] [CrossRef]
- Cui, L.; Wang, X.; Xu, Y.; Jiang, H.; Zhou, J. A Novel Switching Unscented Kalman Filter Method for Remaining Useful Life Prediction of Rolling Bearing. Measurement 2019, 135, 678–684. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Pławiak, P.; Acharya, U.R. Automated Arrhythmia Detection Using Novel Hexadecimal Local Pattern and Multilevel Wavelet Transform with ECG Signals. Knowl. Based Syst. 2019, 186, 104923. [Google Scholar] [CrossRef]
- Huang, N.; Shen, Z.; Long, S.; Wu, M.; Shih, H.; Zheng, Q.; Yen, N.; Tung, C.; Liu, H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yeh, J.-R.; Shieh, J.-S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Luo, C.; Jiang, H.; Li, H.; Li, H.; Lu, Q. Particle Swarm Optimization-Based Variational Mode Decomposition for Ground Penetrating Radar Data Denoising. Remote Sens. 2022, 14, 2973. [Google Scholar] [CrossRef]
- Luo, J.; Wen, G.; Lei, Z.; Su, Y.; Chen, X. Weak Signal Enhancement for Rolling Bearing Fault Diagnosis Based on Adaptive Optimized VMD and SR under Strong Noise Background. Meas. Sci. Technol. 2023, 34, 064001. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Lin, H.; Li, J.; Zhang, F.; Yang, Y. ECG Denoising Method Based on an Improved VMD Algorithm. IEEE Sens. J. 2022, 22, 22725–22733. [Google Scholar] [CrossRef]
- Feng, G.; Wei, H.; Qi, T.; Pei, X.; Wang, H. A Transient Electromagnetic Signal Denoising Method Based on an Improved Variational Mode Decomposition Algorithm. Measurement 2021, 184, 109815. [Google Scholar] [CrossRef]
- Gaur, A.; Tseng, P.-H.; Feng, K.-T.; Srirangarajan, S. VAFER: Signal Decomposition Based Mutual Interference Suppression in FMCW Radars. arXiv 2022, arXiv:2212.13727. Available online: https://arxiv.53yu.com/abs/2212.13727v2 (accessed on 18 April 2023).
- Li, Y.; Feng, B.; Zhang, W. Mutual Interference Mitigation of Millimeter-Wave Radar Based on Variational Mode Decomposition and Signal Reconstruction. Remote Sens. 2023, 15, 557. [Google Scholar] [CrossRef]
- Rameez, M.; Dahl, M.; Pettersson, M.I. Autoregressive Model-Based Signal Reconstruction for Automotive Radar Interference Mitigation. IEEE Sens. J. 2021, 21, 6575–6586. [Google Scholar] [CrossRef]
- Özcan, A.H.; Ünsalan, C. LiDAR Data Filtering and DTM Generation Using Empirical Mode Decomposition. IEEE J.-STARS 2017, 10, 360–371. [Google Scholar]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact Accurate Measurement of Cardiopulmonary Activity Using a Compact Quadrature Doppler Radar Sensor. IEEE. Trans. Biomed. Eng. 2014, 61, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, C.; Zeng, Z.; Chen, L. GPR Signal Denoising and Target Extraction with the CEEMD Method. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1615–1619. [Google Scholar]
- Brooker, G.M. Mutual Interference of Millimeter-Wave Radar Systems. IEEE Trans. Electromagn. Compat. 2007, 49, 170–181. [Google Scholar] [CrossRef]
Parameter | Victim Radar | Interference Radar |
---|---|---|
Carrier frequency | 77 GHz | 77 GHz |
Bandwidth | 400 MHz | 500 MHz |
Chirp time | 50 us | 50 us |
Sampling frequency | 20 MHz | - |
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 |
---|---|---|---|---|---|---|
0.0025 | 0.0001 | 0.0043 | 0.0157 | 0.0211 | 0.1275 | 0.9863 |
EMD | EEMD | CEEMD | VMD |
---|---|---|---|
0.0019 | 1.9569 | 0.6072 | 0.0203 |
Method | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 |
---|---|---|---|---|---|---|---|---|---|
EMD | 0.0001 | 0.7940 | 0.3642 | 0.0253 | 0.0117 | 0.0088 | - | - | - |
EEMD | 0.0107 | 0.0534 | 0.4521 | 0.9788 | 0.6378 | 0.0901 | 0.0358 | 0.0037 | 0.0215 |
CEEMD | 0.0142 | 0.0278 | 0.8529 | 0.9705 | 0.2066 | 0.0419 | 0.0116 | 0.0041 | 0.0001 |
Method | SINR | MSE | KF |
---|---|---|---|
EMD | 3.9949 | 0.0405 | 117.5799 |
EEMD | 13.2550 | 0.0048 | 243.1405 |
CEEMD | 11.6323 | 0.0070 | 251.9405 |
VMD | 15.6063 | 0.0028 | 258.3158 |
Parameter | Victim Radar | Interference Radar |
---|---|---|
Carrier frequency | 77 GHz | 77 GHz |
Bandwidth | 1.2 GHz | 1.2 GHz |
Chirp duration | 80 us | 60 us |
Sampling frequency | 18.75 MHz | - |
Sample points | 1024 |
Method | SINR | MSE | KF |
---|---|---|---|
EMD | 3.2484 | 0.0326 | 148.9389 |
EEMD | 4.7539 | 0.0231 | 220.2773 |
CEEMD | 4.6938 | 0.0234 | 199.6048 |
VMD | 6.5907 | 0.0151 | 275.2658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Hao, X.; Yang, J.; Duan, L.; Yang, Q.; Wang, J. Interference Mitigation Method for Millimeter-Wave Frequency-Modulation Continuous-Wave Radar Based on Outlier Detection and Variational Modal Decomposition. Remote Sens. 2023, 15, 3654. https://doi.org/10.3390/rs15143654
Zhou W, Hao X, Yang J, Duan L, Yang Q, Wang J. Interference Mitigation Method for Millimeter-Wave Frequency-Modulation Continuous-Wave Radar Based on Outlier Detection and Variational Modal Decomposition. Remote Sensing. 2023; 15(14):3654. https://doi.org/10.3390/rs15143654
Chicago/Turabian StyleZhou, Wen, Xinhong Hao, Jin Yang, Lefan Duan, Qiuyan Yang, and Jianqiu Wang. 2023. "Interference Mitigation Method for Millimeter-Wave Frequency-Modulation Continuous-Wave Radar Based on Outlier Detection and Variational Modal Decomposition" Remote Sensing 15, no. 14: 3654. https://doi.org/10.3390/rs15143654
APA StyleZhou, W., Hao, X., Yang, J., Duan, L., Yang, Q., & Wang, J. (2023). Interference Mitigation Method for Millimeter-Wave Frequency-Modulation Continuous-Wave Radar Based on Outlier Detection and Variational Modal Decomposition. Remote Sensing, 15(14), 3654. https://doi.org/10.3390/rs15143654