Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type
Abstract
:1. Introduction
- What percentages of water bodies are mapped by the different remote sensing platforms? What is the difference between using Landsat-8 or Sentinel-2?
- Which is the best water index for detecting water pixels across Ireland? Does this vary by water body type?
- How well does remote sensing map the existing in situ monitoring points? This is critical for the calibration of water quality estimates from remote sensing.
2. Study Area and Methodology
2.1. Study Area
2.2. Earth Observation Platforms
2.3. Methodology
2.3.1. Pre-Processing
2.3.2. Panchromatic Sharpening
2.3.3. Water Mask Creation
2.3.4. Comparison of Binary Water Masks
- Percentage of water cells which overlay water monitoring stations;
- The percentage of lakes mapped and their areas;
- The percentage of rivers mapped and their stream order;
- Percentage of coastal and transitional areas mapped.
3. Results
3.1. Water Masks
3.2. Comparison with In Situ Monitoring Points
3.3. River Network
3.4. Lake Segments
3.5. Coastal and Transitional Water
3.5.1. Coastal Water
3.5.2. Transitional Water
4. Discussion
5. Conclusions
- What percentages of water bodies are mapped from the different remote sensing platforms? What is the difference between using Landsat-8 or Sentinel-2?
- Which is the best water index for detecting water pixels across Ireland? Does this vary by water body type?
- How well does remote sensing map the existing in situ monitoring points? This is critical for the calibration of water quality estimates from remote sensing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Weerasekara, P. The United Nations World Water Development Report 2017-Wastewater: The Untapped Resource. Future Food J. Food Agric. Soc. 2017, 5, 80–81. [Google Scholar]
- Tebbutt, T.H.Y. Principles of Water Quality Control; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Todo, K.; Sato, K. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Environ. Res. Q. 2000, 327, 1–73. [Google Scholar]
- Antwi, S.H.; Rolston, A.; Linnane, S.; Getty, D. Communicating Water Availability to Improve Awareness and Implementation of Water Conservation: A Study of the 2018 and 2020 Drought Events in the Republic of Ireland. Sci. Total Environ. 2022, 807, 150865. [Google Scholar] [CrossRef]
- O’Boyle, S.; Trodd, W.; Bradley, C.; Tierney, D.; Wilkes, R.; Longphuirt, S.N.; Smith, J.; Stephens, A.; Barry, J.; Maher, P. Water Quality in Ireland 2013–2018; Environmental Protection Agency: Wexford, Ireland, 2019. [Google Scholar]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.C.; McHenry, J.R.; Schiebe, F.R.; Wilson, R.B. Relationship of Reflected Solar Radiation and the Concentration of Sediment in the Surface Water of Reservoirs. Remote Sens. Earth Resour. 1975, 3, 57–71. [Google Scholar]
- Schultz, G.A.; Engman, E.T. Remote Sensing in Hydrology and Water Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-59583-7. [Google Scholar]
- Agarwal, A.; Taveneau, A.; Olbert, I.A. Remote Sensing of Surface Waters in Ireland. In Proceedings of the 2018 CERI, University College Dublin, Dublin, Ireland, 29–30 August 2018; p. 7. [Google Scholar]
- Karki, S.; Bermejo, R.; Wilkes, R.; Monagail, M.M.; Daly, E.; Healy, M.; Hanafin, J.; McKinstry, A.; Mellander, P.-E.; Fenton, O.; et al. Mapping Spatial Distribution and Biomass of Intertidal Ulva Blooms Using Machine Learning and Earth Observation. Front. Mar. Sci. 2021, 8, 1–20. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. High-Frequency Remote Monitoring of Large Lakes with MODIS 500 m Imagery. Remote Sens. Environ. 2012, 124, 234–241. [Google Scholar] [CrossRef]
- Klein, I.; Mayr, S.; Gessner, U.; Hirner, A.; Kuenzer, C. Water and Hydropower Reservoirs: High Temporal Resolution Time Series Derived from MODIS Data to Characterize Seasonality and Variability. Remote Sens. Environ. 2021, 253, 112207. [Google Scholar] [CrossRef]
- Han, W.; Huang, C.; Gu, J.; Hou, J.; Zhang, Y. Spatial-Temporal Distribution of the Freeze–Thaw Cycle of the Largest Lake (Qinghai Lake) in China Based on Machine Learning and MODIS from 2000 to 2020. Remote Sens. 2021, 13, 1695. [Google Scholar] [CrossRef]
- Rao, P.; Jiang, W.; Hou, Y.; Chen, Z.; Jia, K. Dynamic Change Analysis of Surface Water in the Yangtze River Basin Based on MODIS Products. Remote Sens. 2018, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Sidle, R.C.; Ziegler, A.D.; Vogler, J.B. Contemporary Changes in Open Water Surface Area of Lake Inle, Myanmar. Sustain. Sci. 2007, 2, 55–65. [Google Scholar] [CrossRef]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending Satellite Remote Sensing to Local Scales: Land and Water Resource Monitoring Using High-Resolution Imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Cannistra, A.F.; Shean, D.E.; Cristea, N.C. High-Resolution CubeSat Imagery and Machine Learning for Detailed Snow-Covered Area. Remote Sens. Environ. 2021, 258, 112399. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Ryan, J.C.; Pitcher, L.H.; Pavelsky, T.M. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophys. Res. Lett. 2019, 46, 2111–2120. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Junqueira, A.M.; Mao, F.; Mendes, T.S.G.; Simões, S.J.C.; Balestieri, J.A.P.; Hannah, D.M. Estimation of River Flow Using CubeSats Remote Sensing. Sci. Total Environ. 2021, 788, 147762. [Google Scholar] [CrossRef]
- Dash, J.; Ogutu, B.O. Recent Advances in Space-Borne Optical Remote Sensing Systems for Monitoring Global Terrestrial Ecosystems. Prog. Phys. Geogr. Earth Environ. 2016, 40, 322–351. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) Data Processing for Aquatic Science Applications: Demonstrations and Validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Global Extent of Rivers and Streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a Global ~90 m Water Body Map Using Multi-Temporal Landsat Images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- O’Loughlin, F.; Trigg, M.A.; Schumann, G.J.-P.; Bates, P.D. Hydraulic Characterization of the Middle Reach of the Congo River. Water Resour. Res. 2013, 49, 5059–5070. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Patterns of River Width and Surface Area Revealed by the Satellite-Derived North American River Width Data Set. Geophys. Res. Lett. 2015, 42, 395–402. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R. Coastal Coverage of ESA’ Sentinel 2 Mission. Adv. Space Res. 2020, 65, 2636–2644. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly Estimation of the Surface Water Extent in France at a 10-m Resolution Using Sentinel-2 Data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Chang, M.; Li, P.; Li, Z.; Wang, H. Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine. Remote Sens. 2022, 14, 1789. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Sánchez-García, E.; Almonacid-Caballer, J.; Palomar-Vázquez, J.M.; Priego de los Santos, E.; Fernández-Sarría, A.; Balaguer-Beser, Á. Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 2018, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.-S.; Shen, H. An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 769–782. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Wang, S.; Baig, M.H.A.; Zhang, L.; Jiang, H.; Ji, Y.; Zhao, H.; Tian, J. A Simple Enhanced Water Index (EWI) for Percent Surface Water Estimation Using Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 90–97. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Yao, F.; Wang, C.; Dong, D.; Luo, J.; Shen, Z.; Yang, K. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery. Remote Sens. 2015, 7, 12336–12355. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Su, H.; Du, Q.; Wu, T. A Novel Surface Water Index Using Local Background Information for Long Term and Large-Scale Landsat Images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Acharya, T.; Subedi, A.; Lee, D. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [Green Version]
- Buma, W.G.; Lee, S.-I.; Seo, J.Y. Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors 2018, 18, 2082. [Google Scholar] [CrossRef] [Green Version]
- Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood Monitoring and Damage Assessment Using Water Indices: A Case Study of Pakistan Flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hu, H.; Liu, X.; Jiang, H.; Liu, W.; Yin, X. A Comparison of Different Water Indices and Band Downscaling Methods for Water Bodies Mapping from Sentinel-2 Imagery at 10-M Resolution. Water 2022, 14, 2696. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Sivanpillai, R.; Jacobs, K.M.; Mattilio, C.M.; Piskorski, E.V. Rapid Flood Inundation Mapping by Differencing Water Indices from Pre- and Post-Flood Landsat Images. Front. Earth Sci. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Fan, M.; Qin, G. Comparative Analysis of Machine Learning Algorithms in Water Extraction. J. Phys. Conf. Ser. 2021, 2076, 012045. [Google Scholar] [CrossRef]
- Li, A.; Fan, M.; Qin, G.; Xu, Y.; Wang, H. Comparative Analysis of Machine Learning Algorithms in Automatic Identification and Extraction of Water Boundaries. Appl. Sci. 2021, 11, 10062. [Google Scholar] [CrossRef]
- Peter, K. Surface Water Quality Monitoring; European Environment Agency: Copenhagen, Denmark, 1996; pp. 123–126. [Google Scholar]
- McGarrigle, M. Assessment of Small Water Bodies in Ireland. Biol. Environ. Proc. R. Ir. Acad. JSTOR 2014, 114, 119–128. [Google Scholar] [CrossRef]
- Feeley, H.; Bruen, M.; Bullock, C.; Christie, M.; Kelly, F.; Kelly-Quinn, M. ESManage Project: Irish Freshwater Resources and Assessment of Ecosystems Services Provision. Available online: https://www.epa.ie/publications/research/water/EPA-RR-207-final-web-2.pdf. (accessed on 22 July 2022).
- Hartnett, M.; Wilson, J.G.; Nash, S. Irish Estuaries: Water Quality Status and Monitoring Implications under the Water Framework Directive. Mar. Policy 2011, 35, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Connaughton, B. The Implementation of Environmental Policy in Ireland: Lessons from Translating EU Directives into Action; Manchester University Press: Manchester, UK, 2019; ISBN 978-1-5261-2756-3. [Google Scholar]
- Antwi, S.H.; Linnane, S.; Getty, D.; Rolston, A. River Basin Management Planning in the Republic of Ireland: Past, Present and the Future. Water 2021, 13, 2074. [Google Scholar] [CrossRef]
- O’Brien, D. Public Consultation on the Draft River Basin Management Plan for Ireland 2022–2027. Available online: https://www.gov.ie/en/consultation/2bda0-public-consultation-on-the-draft-river-basin-management-plan-for-ireland-2022-2027/ (accessed on 22 July 2022).
- Spoto, F.; Sy, O.; Laberinti, P.; Martimort, P.; Fernandez, V.; Colin, O.; Hoersch, B.; Meygret, A. Overview of Sentinel-2. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1707–1710. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, SPIE, Warsaw, Poland, 4 October 2017; Volume 10427, pp. 37–48. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping Cropping Intensity in China Using Time Series Landsat and Sentinel-2 Images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G. Sentinel-2 Pan Sharpening—Comparative Analysis. Proceedings 2018, 2, 345. [Google Scholar] [CrossRef]
- Pohl, C.; van Genderen, J. Remote Sensing Image Fusion: A Practical Guide; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-3003-7. [Google Scholar]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 Images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Schowengerdt, R.A. Reconstruction of Multispatial, Multispectral Image Data Using Spatial Frequency Content. Photogramm. Eng. Remote Sens. 1980, 46, 1325–1334. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wu, L.; Peng, Q. An Improved Otsu Method Using the Weighted Object Variance for Defect Detection. Appl. Surf. Sci. 2015, 349, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-Year Monitoring of the Turbidity Dynamics in Large Lakes and Reservoirs in the Middle and Lower Basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- O’Loughlin, F.E.; Neal, J.; Yamazaki, D.; Bates, P.D. ICESat-Derived Inland Water Surface Spot Heights. Water Resour. Res. 2016, 52, 3276–3284. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
Sentinel-2A/B MSI | Landsat-8 OLI | ||||
---|---|---|---|---|---|
Band | Wavelength Range (nm) | Resolution (m) | Band | Wavelength Range (nm) | Resolution (m) |
Band 1: Coastal aerosol | 442.2–442.7 | 60 | Band 1: Coastal/Aerosol | 435–451 | 30 |
Band 2: Blue | 492.1–492.4 | 10 | Band 2: Blue | 452–512 | |
Band 3: Green | 559.0–559.8 | 10 | Band 3: Green | 533–590 | |
Band 4: Red | 664.6–664.9 | 10 | Band 4: Red | 636–673 | |
Band 5—Vegetation red edge | 703.8–704.1 | 20 | Band 5: Near Infrared Red (NIR) | 851–879 | |
Band 6—Vegetation red edge | 739.1–740.5 | 20 | Band 6: Shortwave Infrared 1 (SWIR1) | 1566–1651 | |
Band 7—Vegetation red edge | 779.7–782.8 | 20 | Band 7: Shortwave Infrared 2 (SWIR2) | 2107–2294 | |
Band 8: Near Infrared Red (NIR) | 832.8–832.9 | 10 | Band 8: Panchromatic | 500–680 | 15 |
Band 8A—Narrow Near Infrared Red | 864.0–864.7 | 20 | Band 9: Cirrus | 1360–1390 | 30 |
Band 9—Water vapor | 943.2–945.1 | 60 | |||
Band 10—SWIR—Cirrus | 1373.5–1376.9 | 60 | |||
Band 11: Shortwave Infrared (SWIR1) | 1613.7–1610.4 | 20 | |||
Band 12: Shortwave Infrared (SWIR2) | 2185.7–2202.4 | 20 |
Platform | Indices | Total | Coastal | Lake | River | Transition |
---|---|---|---|---|---|---|
Landsat-8 | NDWI | 17.7 | 83.68 | 50.99 | 1.83 | 61.86 |
(12.02) | (73.76) | (32.64) | (0.7) | (46.6) | ||
NDVI | 17.68 | 84.71 | 49.29 | 2.07 | 64.68 | |
(12.22) | (75.62) | (32.74) | (0.68) | (49.59) | ||
MNDWI1 | 20.59 | 85.12 | 61.95 | 2.43 | 64.18 | |
(12.81) | (75.21) | (35.62) | (0.73) | (48.76) | ||
MNDWI2 | 18.1 | 83.47 | 53.9 | 1.64 | 60.2 | |
(12.12) | (73.97) | (33.54) | (0.62) | (45.77) | ||
AWEIsh | 19.26 | 86.57 | 56.64 | 2.06 | 64.18 | |
(12.54) | (75.83) | (33.96) | (0.76) | (49.59) | ||
AWEInsh | 19.36 | 85.95 | 58.06 | 1.93 | 62.35 | |
(12.46) | (75.41) | (34.41) | (0.67) | (47.43) | ||
Sentinel-2 | NDWI | 17.1 | 77.69 | 49.12 | 2.11 | 57.55 |
(13.73) | (74.59) | (37.25) | (1.45) | (50.75) | ||
NDVI | 18.14 | 80.99 | 50.47 | 2.61 | 63.85 | |
(14.29) | (77.48) | (37.32) | (1.67) | (57.21) | ||
MNDWI1 | 12.88 | 83.26 | 32.74 | 0.65 | 58.87 | |
(10.45) | (77.27) | (24.63) | (0.26) | (53.57) | ||
MNDWI2 | 14.91 | 86.16 | 37.98 | 1.46 | 64.51 | |
(10.9) | (78.72) | (25.42) | (0.44) | (55.89) | ||
AWEIsh | 17.66 | 82.44 | 50.78 | 1.99 | 60.36 | |
(14.13) | (76.86) | (38.61) | (1.28) | (54.06) | ||
AWEInsh | 24.78 | 85.33 | 67.74 | 6.19 | 70.98 | |
(17.8) | (80.17) | (48.21) | (2.92) | (62.52) |
Platform | River Order | NDVI | NDWI | MNDWI1 | MNDWI2 | AWEIsh | AWEInsh |
---|---|---|---|---|---|---|---|
Landsat-8 | 1 | 2.17 | 2.05 | 4.51 | 2.29 | 2.37 | 2.56 |
(1.5) | (1.43) | (2.42) | (1.55) | (1.64) | (1.69) | ||
2 | 3.69 | 3.55 | 5.26 | 3.73 | 3.87 | 3.96 | |
(2.78) | (2.7) | (3.38) | (2.81) | (2.95) | (2.97) | ||
3 | 5.17 | 5.01 | 6.42 | 5.11 | 5.35 | 5.38 | |
(4.06) | (3.95) | (4.5) | (4.0) | (4.23) | (4.21) | ||
4 | 8.42 | 8.17 | 9.17 | 8.23 | 8.53 | 8.5 | |
(7.17) | (6.92) | (7.42) | (7.01) | (7.32) | (7.26) | ||
5 | 17.67 | 17.63 | 20.42 | 18.12 | 18.65 | 18.93 | |
(14.68) | (14.48) | (15.08) | (14.57) | (15.07) | (15) | ||
6 | 37.36 | 37.86 | 43.25 | 38.82 | 39.58 | 40.49 | |
(28.13) | (28.02) | (30.04) | (27.98) | (29.17) | (29.05) | ||
7 | 82.01 | 82.76 | 87.37 | 83.81 | 84.6 | 85.32 | |
(71.52) | (72.12) | (76.08) | (73.34) | (74.05) | (74.48) | ||
Sentinel-2 | 1 | 2.2 | 2.02 | 1.42 | 2.46 | 2.09 | 2.65 |
(1.87) | (1.75) | (1.17) | (1.51) | (1.77) | (2.23) | ||
2 | 3.7 | 3.42 | 2.57 | 3.35 | 3.53 | 4.23 | |
(3.32) | (3.1) | (2.21) | (2.41) | (3.14) | (3.74) | ||
3 | 5.22 | 4.88 | 3.74 | 4.46 | 5.02 | 5.9 | |
(4.72) | (4.44) | (3.21) | (3.41) | (4.51) | (5.29) | ||
4 | 8.56 | 7.97 | 6.83 | 7.36 | 8.11 | 9.7 | |
(7.91) | (7.37) | (6.14) | (6.12) | (7.58) | (8.57) | ||
5 | 18.93 | 18.46 | 14.6 | 15.6 | 18.77 | 25.07 | |
(16.94) | (16.24) | (13.2) | (13.09) | (16.45) | (19.21) | ||
6 | 38.28 | 37.83 | 28.82 | 31.62 | 42.01 | 56.66 | |
(34.63) | (33.28) | (25.49) | (26.39) | (35.66) | (42.06) | ||
7 | 82.14 | 84.7 | 67.75 | 65.68 | 85.77 | 89.75 | |
(79.06) | (80.39) | (65.38) | (61.47) | (81.55) | (85.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; O’Loughlin, F. Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type. Remote Sens. 2023, 15, 3677. https://doi.org/10.3390/rs15143677
Zhao M, O’Loughlin F. Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type. Remote Sensing. 2023; 15(14):3677. https://doi.org/10.3390/rs15143677
Chicago/Turabian StyleZhao, Minyan, and Fiachra O’Loughlin. 2023. "Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type" Remote Sensing 15, no. 14: 3677. https://doi.org/10.3390/rs15143677
APA StyleZhao, M., & O’Loughlin, F. (2023). Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type. Remote Sensing, 15(14), 3677. https://doi.org/10.3390/rs15143677