Measuring Vertical Urban Growth of Patna Urban Agglomeration Using Persistent Scatterer Interferometry SAR (PSInSAR) Remote Sensing
Abstract
:1. Introduction
2. Study Area
3. Data Used and Methodology
3.1. Horizontal Urban Growth Assessment
3.1.1. SAR-Based Built-Up Area Extraction Using Speckle Divergence
3.1.2. Optical-Based Built-Up Area Extraction Using the Normalized Difference Index
3.2. Vertical Urban Growth Assessment
4. Results and Discussion
4.1. Horizontal Growth of Patna Urban Agglomeration
4.2. Vertical Growth of Patna Urban Agglomeration Using PSInSAR
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafferty, J.P. Urban sprawl|Description, Causes, Environmental Impacts, & Alternatives Encycl. Br. 2009. Available online: https://www.britannica.com/topic/urban-sprawl (accessed on 3 December 2019).
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- United Nations. World Urbanisation Prospects: The 2011 Revision Highlights; United Nations Publication: New York, NY, USA, 2011. [Google Scholar]
- Diksha; Kumar, A. Analysing urban sprawl and land consumption patterns in major capital cities in the Himalayan region using geoinformatics. Appl. Geogr. 2017, 89, 112–123. [Google Scholar] [CrossRef]
- Diksha; Kumar, A.; Tripathy, P. Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas. Environ. Monit. Assess. 2023, 195, 627. [Google Scholar] [CrossRef]
- Radutu, A.; Gogu, R.C. Chronological reflection on monitoring urban areas subsidence due to groundwater extraction. E3S Web Conf. 2019, 85, 07015. [Google Scholar] [CrossRef] [Green Version]
- Graesser, J.; Cheriyadat, A.; Vatsavai, R.R.; Chandola, V.; Long, J.; Bright, E. Image Based Characterization of Formal and Informal Neighborhoods in an Urban Landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1164–1176. [Google Scholar] [CrossRef]
- Kumari, S.; Lal, P.; Kumar, A. Spatial heterogeneity for urban built-up footprint and its characterization using microwave remote sensing. Adv. Space Res. 2022, 70, 3822–3832. [Google Scholar] [CrossRef]
- Diksha; Kumar, A. Measuring the Paradigm Shift in Ecological Services in the Mountainous Urban and Peri-Urban Systems of the Himalayas. Int. J. Ecol. Environ. Sci. 2022, 48, 243–250. [Google Scholar] [CrossRef]
- Doygun, H. Effects of urban sprawl on agricultural land: A case study of Kahramanmaaras, Turkey. Environ. Monit. Assess. 2008, 158, 471–478. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters. Remote Sens. 2018, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Luti, T.; De Fioravante, P.; Marinosci, I.; Strollo, A.; Riitano, N.; Falanga, V.; Mariani, L.; Congedo, L.; Munafò, M. Land Consumption Monitoring with SAR Data and Multispectral Indices. Remote Sens. 2021, 13, 1586. [Google Scholar] [CrossRef]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; D’andrimont, R.; Defourny, P. Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Santarsiero, V.; Nolè, G.; Lanorte, A.; Tucci, B.; Cillis, G.; Murgante, B. Remote Sensing and Spatial Analysis for Land-Take Assessment in Basilicata Region (Southern Italy). Remote Sens. 2022, 14, 1692. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.C.; Jeyaseelan, A. Built-up and vegetation extraction and density mapping using WorldView-II. Geocarto Int. 2012, 27, 557–568. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Hu, J.; Ma, C. Vertical deformation monitoring and analysis of high-rise buildings in Shanghai based on InSAR technology. Adv. Space Res. 2017, 60, 2489–2502. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Javed; Akib; Cheng, Q.; Peng, H.; Altan, O.; Li, Y.; Ara, I.; Huq, E.; Ali, Y.; Saleem, N. Review of Spectral Indices for Urban Remote Sensing. Photogramm. Eng. Remote Sens. 2021, 87, 513–524. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; He, S.; Xu, J.; Tan, J. Impacts of urbanization on land surface temperature in the Beijing-Tianjin-Hebei region: An analysis combining NDBI and NDVI. Sustainability 2019, 11, 2619. [Google Scholar]
- Auerbach, J.; Wan, P. Forecasting the urban skyline with extreme value theory. Int. J. Forecast. 2020, 36, 814–828. [Google Scholar] [CrossRef] [Green Version]
- Swilling, Mark. The Curse of Urban Sprawl: How Cities Grow, and Why This Has to Change. 2016. Available online: https://www.theguardian.com/cities/2016/jul/12/urban-sprawl-how-cities-grow-change-sustainability-urban-age (accessed on 25 October 2017).
- Yusoff, N.A.H.; Noor, A.M.; Ghazali, R. City Skyline Conservation: Sustaining the Premier Image of Kuala Lumpur. Procedia Environ. Sci. 2014, 20, 583–592. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Barr, J. The economics of skyscrapers: A synthesis. J. Urban Econ. 2021, 129, 103419. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Kumar, S.V. Extraction of built-up area using high resolution sentinel-2a and google satellite imagery. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W9, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Esch, T.; Thiel, M.; Schenk, A.; Roth, A.; Müller, A.; Dech, S. Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity Information. IEEE Trans. Geosci. Remote Sens. 2010, 48, 905–916. [Google Scholar] [CrossRef]
- Thiel, M.; Esch, T.; Schenk, A. Object-oriented detection of urban areas from TerraSAR-X data. In Proceeding of the ISPRS 2008 Congress (37), Part B8, Commission VIII, Beijing, China, 5 March 2008; pp. 23–27. [Google Scholar]
- Corbane, C.; Faure, J.-F.; Baghdadi, N.; Villeneuve, N.; Petit, M. Rapid Urban Mapping Using SAR/Optical Imagery Synergy. Sensors 2008, 8, 7125–7143. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Jacob, A.; Gamba, P. Spaceborne SAR data for global urban mapping at 30m resolution using a robust urban extractor. ISPRS J. Photogramm. Remote Sens. 2015, 103, 28–37. [Google Scholar] [CrossRef]
- Kampes, B.M. Radar Interferometry; Springer: Dordrecht, The Netherlands, 2006; Volume 12. [Google Scholar]
- Ma, P.; Lin, H. Robust Detection of Single and Double Persistent Scatterers in Urban Built Environments. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2124–2139. [Google Scholar] [CrossRef]
- Papoutsis, I.; Kontoes, C.; Paradissis, D. Multi-Stack Persistent Scatterer Interferometry Analysis in Wider Athens, Greece. Remote Sens. 2017, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O.; Iglesias, R.; Crippa, B. Persistent Scatterer Interferometry. Photogramm. Eng. Remote Sens. 2010, 76, 1061–1069. [Google Scholar] [CrossRef]
- Yu, J.; Ng, A.H.; Jung, S.; Ge, L.; Rizos, C. Urban Monitoring Using Persistent Scatterer InSAR and Photogrammetry. 2009. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f3cadc3b9bc49332606397f63aaa0bd62989332f (accessed on 25 December 2021).
- Lunetta, R.S.; Elvidge, C.D. Remote Sensing Change Detection Environmental Monitoring Methods and Applications; Ann Arbor Press: Chelsea, MI, USA, 1998. [Google Scholar]
- Bianchini, S.; Pratesi, F.; Del Ventisette, C.; Monni, S. Multi-sensor SAR data for urban areas analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 337–351. [Google Scholar]
- Bhattacharya, A.; Mukherjee, A.; Srivastava, P.K. Monitoring vertical urban growth in Kolkata using persistent scatterer interferometry. J. Appl. Remote Sens. 2020, 14, 036519. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Chandler, T. Four Thousand Years of Urban Growth: An Historical Census; St. David’s University Press: Lewiston, NY, USA, 1987. [Google Scholar]
- Revision of World Population Prospects, Monitoring Global Population Trend. 2015. Available online: http://esa.un.org/wpp/Documentation/pdf/WPP2012_Press_Release.pdf (accessed on 10 January 2017).
- Population Reference Bureau. World Population Data Sheet with a Special Focus on Human Needs and Sustainable Resources. 2016. Available online: http://www.prb.org/pdf16/prb-wpds2016-web-2016.pdf (accessed on 5 April 2020).
- Khan, B.; Rathore, V.S.; Krishna, A.P. Identification of Desakota Region and Urban Growth Analysis in Patna City, India Using Remote Sensing Data and GIS. J. Indian Soc. Remote Sens. 2021, 49, 935–945. [Google Scholar] [CrossRef]
- Tiwari, R.; Sharma, N. Patna: City Profile. 2016. Available online: https://idl-bnc-idrc.dspacedirect.org/handle/10625/55689 (accessed on 12 February 2022).
- Duarte-Salazar, C.A.; Castro-Ospina, A.E.; Becerra, M.A.; Delgado-Trejos, E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access 2020, 8, 15983–15999. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1973, 351, 309–317. [Google Scholar]
- Gonnuru, P.; Kumar, S. PsInSAR based land subsidence estimation of Burgan oil field using TerraSAR-X data. Remote Sens. Appl. Soc. Environ. 2018, 9, 17–25. [Google Scholar] [CrossRef]
- Mishra, M. Urban sprawl mapping using geospatial technology in Patna municipal corporation. Explor. J. Res. 2022, XIV, 140–146. [Google Scholar]
- Ab Latip, A.S.; Matori, A.; Aobpaet, A.; Din, A.H.M. Monitoring of offshore platform deformation with stanford method of Persistent Scatterer (StaMPS). In Proceedings of the 2015 International Conference on Space Science and Communication (IconSpace), Langkawi, Malaysia, 10–12 August 2015; pp. 79–83. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Brunner, D.; Bruzzone, L.; Ferro, A.; Lemoine, G. Analysis of the reliability of the double bounce scattering mechanism for detecting buildings in VHR SAR images. In Proceedings of the 2009 IEEE Radar Conference, Pasadena, CA, USA, 4–8 May 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Patna Metropolitan Planning Committee. Patna Master Plan 2031. 2011. Available online: http://patnametropolitian.in/wp-content/uploads/2013/03/Master-Plan-2031.pdf (accessed on 25 December 2017).
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, E. Remote sensing and geospatial analysis. Geoinformatics Geosci. 2023, 185–195. [Google Scholar] [CrossRef]
- Okoli, J.; Nahazanan, H.; Nahas, F.; Kalantar, B.; Shafri, H.Z.M.; Khuzaimah, Z. High-Resolution Lidar-Derived DEM for Landslide Susceptibility Assessment Using AHP and Fuzzy Logic in Serdang, Malaysia. Geosciences 2023, 13, 34. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase unwrapping in InSAR: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Cian, F.; Blasco, J.M.D.; Carrera, L. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences 2019, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Del Soldato, M.; Confuorto, P.; Bianchini, S.; Sbarra, P.; Casagli, N. Review of Works Combining GNSS and InSAR in Europe. Remote Sens. 2021, 13, 1684. [Google Scholar] [CrossRef]
Satellite | Type | Spatial Resolution | Date of Acquisition |
---|---|---|---|
Sentinel 2A | Multispectral | 10 m, 20 m, and 60 m | 13 February 2015 and 14 December 2018 |
Sentinel 1A | GRD | 10 m | 15 January 2015 and 25 December 2018 |
Sentinel 1A | SLC | 10 m | 15 January 2015, 8 February 2015, 16 March 2015, 9 April 2015, 3 May 2015, 15 May 2015, 27 May 2015, 20 June 2015, 14 July 2015, 26 July 2015, 31 August 2015, 30 October 2015, 6 October 2015, 23 November 2015, and 17 December 2015 11 May 2018, 23 May 2018, 4 June 2018, 16 June 2018, 10 July 2018, 22 July 2018, 3 August 2018, 27 August 2018, 8 September 2018, 20 September 2018, 2 October 2018, 26 October 2018, 7 November 2018, 19 November 2018, and 1 December 2018 |
Method for Built-up Area Extraction | ||||
---|---|---|---|---|
Speckle Divergence | Normalized Difference Index | |||
Area of Features (in km2) | 2015 | 2018 | 2015 | 2018 |
Built-up | 63.33 | 74.6 | 69.94 | 76.45 |
Non-Built-up | 64.537 | 53.267 | 57.927 | 51.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, A.; Diksha; Kumar, A. Measuring Vertical Urban Growth of Patna Urban Agglomeration Using Persistent Scatterer Interferometry SAR (PSInSAR) Remote Sensing. Remote Sens. 2023, 15, 3687. https://doi.org/10.3390/rs15143687
Prakash A, Diksha, Kumar A. Measuring Vertical Urban Growth of Patna Urban Agglomeration Using Persistent Scatterer Interferometry SAR (PSInSAR) Remote Sensing. Remote Sensing. 2023; 15(14):3687. https://doi.org/10.3390/rs15143687
Chicago/Turabian StylePrakash, Aniket, Diksha, and Amit Kumar. 2023. "Measuring Vertical Urban Growth of Patna Urban Agglomeration Using Persistent Scatterer Interferometry SAR (PSInSAR) Remote Sensing" Remote Sensing 15, no. 14: 3687. https://doi.org/10.3390/rs15143687
APA StylePrakash, A., Diksha, & Kumar, A. (2023). Measuring Vertical Urban Growth of Patna Urban Agglomeration Using Persistent Scatterer Interferometry SAR (PSInSAR) Remote Sensing. Remote Sensing, 15(14), 3687. https://doi.org/10.3390/rs15143687