Emerging Signal of Englacial Debris on One Clean Surface Glacier Based on High Spatial Resolution Remote Sensing Data in Northeastern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spatial Distribution of Englacial Debris
3.2. Exposure Mechanisms of Englacial Debris
3.3. Effects of the Exposed Debris on Glacier Mass Loss
4. Discussion
4.1. The Influence of Climate Warming
4.2. The Hydrological Impact of Exposed Debris
4.3. Challenges and Potential Solutions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Scheel, M.; Bajracharya, S.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.D.; Xue, Y.K.; Chen, D.L.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multi-disciplinary approach with observation, modeling and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 131–202. [Google Scholar]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Baillie, J.E.M. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Kirkbride, M.P. Debris-covered glaciers. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Berlin, Germany, 2011; pp. 180–182. [Google Scholar]
- Østrem, G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann. Ser. A Phys. Geogr. 1959, 41, 228–230. [Google Scholar] [CrossRef]
- Reid, T.D.; Brock, B.W. An energy-balance model for debris-covered glaciers including heat conduction through the debris layer. J. Glaciol. 2010, 56, 903–916. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Nicholson, L.; Benn, D.I. Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation. Earth Surf. Proc. Landf. 2013, 38, 490–501. [Google Scholar] [CrossRef]
- Nicholson, L.; Wirbel, A.; Mayer, C.; Lambrecht, A. The challenge of non-stationary feedbacks in modeling the response of debris-covered glaciers to climate forcing. Front. Earth Sci. 2021, 9, 662695. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; McNabb, R.W.; Millan, R.; Sommer, C.; Braun, M.H.; Maussion, M.F.; Mouginot, J.; Shean, S.D.E. Distributed global debris thickness estimates reveal debris significantly impacts glacier mass balance. Geophys. Res. Lett. 2021, 48, e2020GL091311. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, M.P. About the concepts of continuum and age. Boreas 1989, 18, 87–88. [Google Scholar] [CrossRef]
- Kirkbride, M.P. Ice-marginal geomorphology and Holocene expansion of debris-covered Tasman Glacier, New Zealand. In Debris-Covered Glaciers; Nakawo, M., Raymond, C.F., Fountain, A., Eds.; IAHS Press: Wallingford, UK, 2000; pp. 211–217. [Google Scholar]
- Wirbel, A.; Jarosch, A.H.; Nicholson, L. Modelling debris transport within glaciers by advection in a full-Stokes ice flow model. Cryosphere 2018, 12, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Herreid, S.; Pellicciotti, F. The state of rock debris covering Earth’s glaciers. Nat. Geosci. 2020, 13, 621–627. [Google Scholar] [CrossRef]
- Glasser, N.F.; Holt, T.O.; Evans, Z.D.; Davies, B.J.; Pelto, M.; Harrison, S. Recent spatial and temporal variations in debris cover on Patagonian glaciers. Geomorphology 2016, 273, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Liu, S.; Wu, K.; Zhu, Y.; Gao, Y.; Qi, M.; Duan, S.; Saifullah, M.; Tahir, A.A. Upward expansion of supra-glacial debris cover in the Hunza Valley, Karakoram, during 1990–2019. Front. Earth Sci. 2020, 8, 308. [Google Scholar] [CrossRef]
- Shea, J.M.; Kraaijenbrink, P.D.; Immerzeel, W.W.; Brun, F. Debris Emergence Elevations and Glacier Change. Front. Earth Sci. 2021, 9, 709957. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Wang, X. Debris-cover effect in the Tibetan Plateau and surroundings: A review. J. Glaciol. Geocryol. 2022, 44, 900–913, (In Chinese with English Abstract). [Google Scholar]
- Kirkbride, M.P.; Deline, P. The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf. Proc. Landf. 2013, 38, 1779–1792. [Google Scholar] [CrossRef]
- Ali, I.; Shukla, A.; Romshoo, S.A. Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. Geomorphology 2017, 284, 115–129. [Google Scholar] [CrossRef]
- Whitehead, K.; Hugenholtz, C.H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmann. Veh. Sys. 2014, 2, 69–85. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Śledź, S.; Ewertowski, M.W.; Piekarczyk, J. Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology. Geomorphology 2021, 378, 107620. [Google Scholar] [CrossRef]
- Taylor, L.S.; Quincey, D.J.; Smith, M.W.; Baumhoer, C.A.; McMillan, M.; Mansell, D.T. Remote sensing of the mountain cryosphere: Current capabilities and future opportunities for research. Prog. Phys. Geogr. Earth Environ. 2021, 45, 931–964. [Google Scholar] [CrossRef]
- Science Press. The investigation team on utilization of snow and ice resources in mountain regions, the Chinese Academy of Sciences. In Report of Investigations of Glaciers in the Qilian Mountains; Science Press: Beijing, China, 1959. (In Chinese) [Google Scholar]
- Liu, S.; Guo, W.; Xu, J. The Second Glacial Catalogue Data Set of China (v1.0); National Cryosphere Desert Data Center: Lanzhou, China, 2019. [Google Scholar] [CrossRef]
- Benoit, L.; Gourdon, A.; Vallat, R.; Irarrazaval, I.; Gravey, M.; Lehmann, B.; Prasicek, G.; Graff, D.; Herman, F.; Mariethoz, G. A high-resolution image time series of the Gorner Glacier-Swiss Alps-derived from repeated unmanned aerial vehicle surveys. Earth Sys. Sci. Data 2019, 11, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y. Glaciers and Their Environments in China-the Present, Past and Future; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Shi, Y. Concise Glacier Inventory of China; Shanghai Popular Science Press: Shanghai, China, 2008. [Google Scholar]
- Yang, W.; Zhou, S.; Chiyuki, N.; Wang, X.; Wang, J. The stage-division and environmental significance of moraine in Qiyi glacier, Qilian Shan. J. Lanzhou Univ. Nat. Sci. 2006, 42, 12–15. [Google Scholar]
- Duan, K.; Yao, T.; Wang, N.; Shi, P.; Meng, Y. Changes in equilibrium-line altitude and implications for glacier evolution in the Asian high mountains in the 21st century. Sci. Chin. Earth Sci. 2022, 65, 1308–1316. [Google Scholar] [CrossRef]
- Che, T.; Hao, X.; Dai, L.; Li, H.; Huang, X.; Xiao, L. Snow Cover Variation and Its Impacts over the Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci. 2019, 34, 1247–1253, (In Chinese with English Abstract). [Google Scholar]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Jing, Z.; Wu, Y.; Deng, Y. Latest survey and study of surface flow features of the Qiyi Glacier in the Qilian Mountains. J. Glaciol. Geocryol. 2014, 36, 537–545, (In Chinese with English Abstract). [Google Scholar]
- Domecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar]
- Anderson, R.S.; Anderson, L.S.; Armstrong, W.H.; Rossi, M.W.; Crump, S.E. Glaciation of alpine valleys: The glacier–debris-covered glacier–rock glacier continuum. Geomorphology 2018, 311, 127–142. [Google Scholar] [CrossRef]
- Moore, P.L. Numerical Simulation of Supraglacial Debris Mobility: Implications for Ablation and Landform Genesis. Front. Earth Sci. 2021, 9, 710131. [Google Scholar] [CrossRef]
- Mölg, N.; Ferguson, J.; Bolch, T.; Vieli, A. On the influence of debris cover on glacier morphology: How high-relief structures evolve from smooth surfaces. Geomorphology 2020, 357, 107092. [Google Scholar] [CrossRef]
Distance to Glacier Terminal (m) | Debris Cover Area (m2) | ||||
---|---|---|---|---|---|
1972 | 2005 | 2012 | 2020 | 2021 | |
50 | 1815.26 | 1355.98 | 458.46 | 828.67 | 571.57 |
100 | 1000.06 | 2932.51 | 36.88 | 1608.89 | 1796.35 |
150 | 0.00 | 586.28 | 424.14 | 1000.19 | 1225.05 |
200 | 0.00 | 0.00 | 223.37 | 1569.82 | 1890.57 |
250 | 0.00 | 0.00 | 161.62 | 493.53 | 549.43 |
300 | 0.00 | 0.00 | 118.42 | 693.17 | 762.75 |
350 | 0.00 | 0.00 | 284.43 | 243.01 | 272.46 |
400 | 0.00 | 0.00 | 0.00 | 8.18 | 15.64 |
450 | 0.00 | 72.24 | 0.00 | 15.06 | 19.85 |
500 | 0.00 | 54.46 | 0.00 | 0.00 | 0.00 |
Total debris cover area | 2815.32 | 5001.47 | 1707.33 | 6460.52 | 7103.67 |
Annual change rate | - | 66.25 | -470.59 | 594.15 | 643.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, W.; Zhang, S.; Mao, Z.; Chen, A.; Li, Z.; Zhang, Q.; Guo, Z.; Jiang, X.; Long, Y. Emerging Signal of Englacial Debris on One Clean Surface Glacier Based on High Spatial Resolution Remote Sensing Data in Northeastern Tibetan Plateau. Remote Sens. 2023, 15, 3899. https://doi.org/10.3390/rs15153899
Wu Y, Zhang W, Zhang S, Mao Z, Chen A, Li Z, Zhang Q, Guo Z, Jiang X, Long Y. Emerging Signal of Englacial Debris on One Clean Surface Glacier Based on High Spatial Resolution Remote Sensing Data in Northeastern Tibetan Plateau. Remote Sensing. 2023; 15(15):3899. https://doi.org/10.3390/rs15153899
Chicago/Turabian StyleWu, Yuwei, Wei Zhang, Shiqiang Zhang, Zhonglei Mao, Anan Chen, Zhen Li, Quan Zhang, Zhongming Guo, Xi Jiang, and Yongqing Long. 2023. "Emerging Signal of Englacial Debris on One Clean Surface Glacier Based on High Spatial Resolution Remote Sensing Data in Northeastern Tibetan Plateau" Remote Sensing 15, no. 15: 3899. https://doi.org/10.3390/rs15153899
APA StyleWu, Y., Zhang, W., Zhang, S., Mao, Z., Chen, A., Li, Z., Zhang, Q., Guo, Z., Jiang, X., & Long, Y. (2023). Emerging Signal of Englacial Debris on One Clean Surface Glacier Based on High Spatial Resolution Remote Sensing Data in Northeastern Tibetan Plateau. Remote Sensing, 15(15), 3899. https://doi.org/10.3390/rs15153899