Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Rain Gauge Data and GPM IMERG Satellite Precipitation Products
3. Methodology
3.1. Trends of Extreme Rainfall Indices
3.2. Hydrological Modelling
3.2.1. Model Inputs
3.2.2. Performance of IMERG Data in Simulating Storm Events
3.3. Sensitivity Analysis of the GSSHA Model to Input Parameters
4. Results
4.1. Comparison of Trends in Extreme Precipitation Indices Using IMERG Final and CHIRPS
4.2. Recent Trends in Extreme Precipitation Indices Using IMERG Data
4.3. Performance of IMERG Products in Hydrological Modelling of Extreme Event
4.4. Sensitivity Analysis of the Model to Input Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Coordinates | Indices | Trend | ||
---|---|---|---|---|
Latitude | Longitude | IMERG | CHIRPS | |
25.15 | 56.15 | R10 | SP | P |
R20 | P | P | ||
R25 | NT | P | ||
CWD | P | SP | ||
R95 | P | P | ||
PRCPTOT | P | P | ||
25.15 | 56.25 | R10 | SP | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | P | P | ||
R95 | P | P | ||
PRCPTOT | SP | SP | ||
25.25 | 56.25 | R10 | SP | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | P | P | ||
R95 | P | P | ||
PRCPTOT | SP | P | ||
25.25 | 56.15 | R10 | SP | SP |
R20 | P | P | ||
R25 | P | P | ||
CWD | P | P | ||
R95 | P | P | ||
PRCPTOT | P | P | ||
25.55 | 56.15 | R10 | P | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | P | P | ||
R95 | P | P | ||
PRCPTOT | P | P | ||
25.65 | 56.15 | R10 | P | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | P | P | ||
R95 | N | P | ||
PRCPTOT | P | P | ||
25.65 | 56.05 | R10 | P | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | SP | P | ||
R95 | P | P | ||
PRCPTOT | P | P | ||
25.55 | 56.05 | R10 | P | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | SP | P | ||
R95 | P | P | ||
PRCPTOT | P | P | ||
25.35 | 56.05 | R10 | P | P |
R20 | P | P | ||
R25 | P | P | ||
CWD | SP | P | ||
R95 | P | P | ||
PRCPTOT | P | P |
References
- Costache, R.; Arabameri, A.; Blaschke, T.; Pham, Q.B.; Pham, B.T.; Pandey, M.; Arora, A.; Linh, N.T.T.; Costache, I. Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors. Sensors 2021, 21, 280. [Google Scholar] [CrossRef] [PubMed]
- Hinge, G.; Hamouda, M.A.; Long, D.; Mohamed, M.M. Hydrologic Utility of Satellite Precipitation Products in Flood Prediction: A Meta-Data Analysis and Lessons Learnt. J. Hydrol. 2022, 612, 128103. [Google Scholar] [CrossRef]
- Fekete, A.; Sandholz, S. Here Comes the Flood, but Not Failure? Lessons to Learn after the Heavy Rain and Pluvial Floods in Germany 2021. Water 2021, 13, 3016. [Google Scholar] [CrossRef]
- Bisht, S.; Chaudhry, S.; Sharma, S.; Soni, S. Assessment of Flash Flood Vulnerability Zonation through Geospatial Technique in High Altitude Himalayan Watershed, Himachal Pradesh India. Remote Sens. Appl. Soc. Environ. 2018, 12, 35–47. [Google Scholar] [CrossRef]
- Yagoub, M.M.; Alsereidi, A.A.; Mohamed, E.A.; Periyasamy, P.; Alameri, R.; Aldarmaki, S.; Alhashmi, Y. Newspapers as a Validation Proxy for GIS Modeling in Fujairah, United Arab Emirates: Identifying Flood-Prone Areas. Nat. Hazards 2020, 104, 111–141. [Google Scholar]
- Ma, M.; Wang, H.; Jia, P.; Tang, G.; Wang, D.; Ma, Z.; Yan, H. Application of the GPM-IMERG Products in Flash Flood Warning: A Case Study in Yunnan, China. Remote Sens. 2020, 12, 1954. [Google Scholar] [CrossRef]
- Zubieta, R.; Getirana, A.; Espinoza, J.C.; Lavado-Casimiro, W.; Aragon, L. Hydrological Modeling of the Peruvian–Ecuadorian Amazon Basin Using GPM-IMERG Satellite-Based Precipitation Dataset. Hydrol. Earth Syst. Sci. 2017, 21, 3543–3555. [Google Scholar] [CrossRef] [Green Version]
- da Amorim, J.S.; Viola, M.R.; Junqueira, R.; de Oliveira, V.A.; Mello, C.R. de Evaluation of Satellite Precipitation Products for Hydrological Modeling in the Brazilian Cerrado Biome. Water 2020, 12, 2571. [Google Scholar] [CrossRef]
- Jiang, L.; Bauer-Gottwein, P. How Do GPM IMERG Precipitation Estimates Perform as Hydrological Model Forcing? Evaluation for 300 Catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic Evaluation of Satellite Precipitation Products over a Mid-Size Basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the Latest Satellite–Gauge Precipitation Products and Their Hydrologic Applications over the Huaihe River Basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar]
- Li, W.; Jiang, Q.; He, X.; Sun, H.; Sun, W.; Scaioni, M.; Chen, S.; Li, X.; Gao, J.; Hong, Y. Effective Multi-Satellite Precipitation Fusion Procedure Conditioned by Gauge Background Fields over the Chinese Mainland. J. Hydrol. 2022, 610, 127783. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of Imerg Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Hamouda, M.A.; Mohamed, M.M. Spatiotemporal Evaluation of the GPM Satellite Precipitation Products over the United Arab Emirates. Atmos. Res. 2019, 219, 200–212. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. Version 2015, 4, 26. [Google Scholar]
- Giannaros, C.; Dafis, S.; Stefanidis, S.; Giannaros, T.M.; Koletsis, I.; Oikonomou, C. Hydrometeorological Analysis of a Flash Flood Event in an Ungauged Mediterranean Watershed under an Operational Forecasting and Monitoring Context. Meteorol. Appl. 2022, 29, e2079. [Google Scholar]
- Ouaba, M.; Saidi, M.E.; Alam, M.J. Bin Flood Modeling through Remote Sensing Datasets Such as LPRM Soil Moisture and GPM-IMERG Precipitation: A Case Study of Ungauged Basins across Morocco. Earth Sci. Inform. 2023, 16, 653–674. [Google Scholar]
- Rachdane, M.; El Khalki, E.M.; Saidi, M.E.; Nehmadou, M.; Ahbari, A.; Tramblay, Y. Comparison of High-Resolution Satellite Precipitation Products in Sub-Saharan Morocco. Water 2022, 14, 3336. [Google Scholar]
- Saouabe, T.; El Khalki, E.M.; Saidi, M.E.M.; Najmi, A.; Hadri, A.; Rachidi, S.; Jadoud, M.; Tramblay, Y. Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco. Water 2020, 12, 2516. [Google Scholar]
- Downer, C.W.; Ogden, F.L. GSSHA: Model to Simulate Diverse Stream Flow Producing Processes. J. Hydrol. Eng. 2004, 9, 161–174. [Google Scholar] [CrossRef]
- Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O. Physically-Based, Distributed Hydrologic Model for Makkah Watershed Using GPM Satellite Rainfall and Ground Rainfall Stations. Geomat. Nat. Hazards Risk 2021, 12, 1234–1257. [Google Scholar] [CrossRef]
- Furl, C.; Ghebreyesus, D.; Sharif, H.O. Assessment of the Performance of Satellite-Based Precipitation Products for Flood Events across Diverse Spatial Scales Using GSSHA Modeling System. Geosciences 2018, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Sharif, H.O.; Al-Zahrani, M.; Hassan, A. El Physically, Fully-Distributed Hydrologic Simulations Driven by GPM Satellite Rainfall over an Urbanizing Arid Catchment in Saudi Arabia. Water 2017, 9, 163. [Google Scholar] [CrossRef]
- Medina, Y.; Muñoz, E. Analysis of the Relative Importance of Model Parameters in Watersheds with Different Hydrological Regimes. Water 2020, 12, 2376. [Google Scholar]
- Merabtene, T.; Siddique, M.; Shanableh, A. Assessment of Seasonal and Annual Rainfall Trends and Variability in Sharjah City, UAE. Adv. Meteorol. 2016, 2016, 6206238. [Google Scholar]
- Chowdhury, R.; Mohamed, M.M.A.; Murad, A. Variability of Extreme Hydro-Climate Parameters in the North-Eastern Region of United Arab Emirates. Procedia Eng. 2016, 154, 639–644. [Google Scholar]
- Sherif, M.; Akram, S.; Shetty, A. Rainfall Analysis for the Northern Wadis of United Arab Emirates: A Case Study. J. Hydrol. Eng. 2009, 14, 535–544. [Google Scholar]
- Sherif, M.M.; Mohamed, M.M.; Shetty, A.; Almulla, M. Rainfall-Runoff Modeling of Three Wadis in the Northern Area of UAE. J. Hydrol. Eng. 2011, 16, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Sherif, M.M.; Al Mahmoudy, A.; Garamoon, H.; Kasimov, A.; Akram, S.; Ebraheem, A.M.; Shetty, A. Assessment of the Effectiveness of Al Bih, Al Tawiyean and Ham Dams in Groundwater Recharge Using Numerical Models. Final Rep. 2005, 1. [Google Scholar]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring. US Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a High-Resolution Precipitation Database (CHIRPS) over Cyprus for a 30-Year Period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Hinge, G.; Mohamed, M.M.; Long, D.; Hamouda, M.A. Meta-Analysis in Using Satellite Precipitation Products for Drought Monitoring: Lessons Learnt and Way Forward. Remote Sens. 2021, 13, 4353. [Google Scholar]
- Hinge, G.; Mazumdar, M.; Deb, S.; Kalita, M.K. District-Level Assessment of Changes in Extreme Rainfall Indices in Barak and Other Basins in Indian Himalayan States: Risks and Opportunities. Model. Earth Syst. Environ. 2021, 8, 1145–1155. [Google Scholar]
- Zhan, Y.-J.; Ren, G.-Y.; Shrestha, A.B.; Rajbhandari, R.; Ren, Y.-Y.; Sanjay, J.; Xu, Y.; Sun, X.-B.; You, Q.-L.; Wang, S. Changes in Extreme Precipitation Events over the Hindu Kush Himalayan Region during 1961–2012. Adv. Clim. Chang. Res. 2017, 8, 166–175. [Google Scholar]
- Zhang, X.; Yang, F. RClimDex (1.0) User Manual. Clim. Res. Branch Environ. Can. 2004, 22, 13–14. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; ISBN 0-85264-199-0. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Tatalovich, Z.; Wilson, J.P.; Cockburn, M. A Comparison of Thiessen Polygon, Kriging, and Spline Models of Potential UV Exposure. Cartogr. Geogr. Inf. Sci. 2006, 33, 217–231. [Google Scholar] [CrossRef]
- Chen, F.-W.; Liu, C.-W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Downer, C.W.; Ogden, F.L. Gridded Surface Subsurface Hydrological Analysis (GSSHA) User’s Manual; Version 1.43 for Watershed Modeling System 6.1. 2006. Available online: http://wmsdocs.aquaveo.com/gssha_manual_erdc.pdf (accessed on 10 October 2022).
- Stefanidis, S.; Dafis, S.; Stathis, D. Evaluation of Regional Climate Models (RCMs) Performance in Simulating Seasonal Precipitation over Mountainous Central Pindus (Greece). Water 2020, 12, 2750. [Google Scholar]
- Kazamias, A.-P.; Sapountzis, M.; Lagouvardos, K. Evaluation of GPM-IMERG Rainfall Estimates at Multiple Temporal and Spatial Scales over Greece. Atmos. Res. 2022, 269, 106014. [Google Scholar]
- Saltelli, A. Sensitivity Analysis for Importance Assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Saha, G.C.; Li, J.; Thring, R.W. Understanding the Effects of Parameter Uncertainty on Temporal Dynamics of Groundwater-Surface Water Interaction. Hydrology 2017, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Braud, I.; Roux, H.; Anquetin, S.; Maubourguet, M.-M.; Manus, C.; Viallet, P.; Dartus, D. The Use of Distributed Hydrological Models for the Gard 2002 Flash Flood Event: Analysis of Associated Hydrological Processes. J. Hydrol. 2010, 394, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Ogden, F.L.; Raj Pradhan, N.; Downer, C.W.; Zahner, J.A. Relative Importance of Impervious Area, Drainage Density, Width Function, and Subsurface Storm Drainage on Flood Runoff from an Urbanized Catchment. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, A.M.; Hosseini, K.; Farzin, S.; Mousavi, S.-F. An Innovative Approach of GSSHA Model in Flood Analysis of Large Watersheds Based on Accuracy of DEM, Size of Grids, and Stream Density. Appl. Water Sci. 2023, 13, 33. [Google Scholar] [CrossRef]
Latitude | Longitude | Station Name | Wadi | Frequency of Data | Dates | Distance to Nearest GPM (Km) |
---|---|---|---|---|---|---|
25.39 | 56.01 | Manama | Wadi Maidaq | Daily | 2017–2020 | 5.8 |
25.17 | 56.18 | Al FarFar | Wadi Ham | Daily | 2017–2020 | 3.6 |
25.13 | 56.16 | Al Heben | Wadi Ham | Daily | 2017–2020 | 2.2 |
25.11 | 56.32 | Fujairah Int’l Airport | Wadi Ham | Daily | 2017–2020 | 8.1 |
25.56 | 56.07 | Al Tawiyen | Wadi Taween | Daily | 2017–2020 | 2.3 |
25.57 | 56.23 | Dibba | Wadi Taween | Daily | 2017–2020 | 8.0 |
Index | Unit | Description |
---|---|---|
R10 | Days | Annual count of days when precipitation ≥ 10 mm |
R20 | Days | Annual count of days when precipitation ≥ 20 mm |
R25 | Days | Annual count of days when precipitation ≥ 25 mm |
CWD | Days | Maximum number of consecutive days with RR ≥ 1 mm |
R95p | mm | Annual total PRCP when RR > 95th percentile |
PRCPTOT | mm | Annual total PRCP in wet days (RR ≥ 1 mm) |
Soil Type | Soil Texture | Hydraulic Conductivity (cm/h) | Effective Porosity | Capillary Head (cm) | Initial Moisture Content |
---|---|---|---|---|---|
Rock outcrops | Rock | 0.0002 a | 0.2 a | 10 a | 0.011 a |
Torriorthents | Sandy loam | 1.09 b | 0.453 b | 11.01 b | 0.095 a |
Mountains | Rock | 0.0002 a | 0.2 a | 10 a | 0.011 a |
Haplocalcids | Sandy loam | 1.09 b | 0.412 b | 11.01 b | 0.095 a |
Land Use Type | Manning Roughness Coefficient |
---|---|
Waterbodies | 0.05 |
Trees | 0.3 |
Crops | 0.22 |
Built area | 0.1 |
Bare area | 0.2 |
Wadi | Rainfall Type | Statistical Measures | |||
---|---|---|---|---|---|
Epeak (%) | Evolume (%) | MAE | RMSE | ||
Wadi Ham | Gauge vs. IMERG Early | −38.02 | −44.92 | 7.74 | 20.95 |
Gauge vs. IMERG Late | −1.6 | −12.76 | 2.73 | 9.8 | |
Gauge vs. IMERG Final | 6.11 | −0.90 | 1.5 | 4.36 | |
Wadi Taween | Gauge vs. IMERG Early | −56.04 | −54.07 | 19.59 | 29.43 |
Gauge vs. IMERG Late | 8.8 | −16.03 | 10.26 | 13.62 | |
Gauge vs. IMERG Final | 3.59 | −1.39 | 2.97 | 5.59 | |
Wadi Maidaq | Gauge vs. IMERG Early | −3.83 | −43.20 | 2.48 | 4.193 |
Gauge vs. IMERG Late | −38.02 | −21.01 | 2.09 | 3.01 | |
Gauge vs. IMERG Final | 6.11 | −0.56 | 0.50 | 0.79 |
Wadi Ham | Wadi Taween | Wadi Maidaq | ||||||
---|---|---|---|---|---|---|---|---|
Parameter | Relative Sensitivity | Rank | Parameter | Relative Sensitivity | Rank | Parameter | Relative Sensitivity | Rank |
Porosity (mountain) | 0.017 | 1 | KS (mountain) | 0.021 | 1 | Porosity (mountain) | 0.0019 | 1 |
KS(mountain) | 0.013 | 2 | Porosity (mountain) | 0.019 | 2 | KS (mountain) | 0.0016 | 2 |
Capillary Head (mountain) | 0.012 | 3 | Capillary Head (mountain) | 0.016 | 3 | Capillary Head (mountain) | 0.0013 | 3 |
Manning’s n (Built area) | 0.009 | 4 | Manning’s n (Bare area) | 0.008 | 4 | Manning’s n (Built area) | 0.009 | 4 |
Manning’s n (Bare area) | 0.007 | 5 | Manning’s n (Built area) | 0.006 | 5 | Manning’s n (Bare area) | 0.005 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamouda, M.A.; Hinge, G.; Yemane, H.S.; Al Mosteka, H.; Makki, M.; Mohamed, M.M. Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE. Remote Sens. 2023, 15, 3991. https://doi.org/10.3390/rs15163991
Hamouda MA, Hinge G, Yemane HS, Al Mosteka H, Makki M, Mohamed MM. Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE. Remote Sensing. 2023; 15(16):3991. https://doi.org/10.3390/rs15163991
Chicago/Turabian StyleHamouda, Mohamed A., Gilbert Hinge, Henok S. Yemane, Hasan Al Mosteka, Mohammed Makki, and Mohamed M. Mohamed. 2023. "Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE" Remote Sensing 15, no. 16: 3991. https://doi.org/10.3390/rs15163991
APA StyleHamouda, M. A., Hinge, G., Yemane, H. S., Al Mosteka, H., Makki, M., & Mohamed, M. M. (2023). Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE. Remote Sensing, 15(16), 3991. https://doi.org/10.3390/rs15163991