Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
- 1.
- We propose a bitemporal remote sensing image change detection network based on the Siamese-attention feedback system architecture (SAFNet) to address the challenges in change detection tasks. We design a temporal interaction module (TIM). When multi-scale features in the encoder block are passed into the corresponding decoder, the network’s perception of the changing target is enhanced by using TIM to implement feature feedback between the two time steps, thus producing better detection results. SAFNet produces prediction outputs step by step and eventually obtains the best change prediction map.
- 2.
- We propose the global semantic module (GSM), change feature extraction module (CFEM), and feature refinement module (FRM). By introducing GSM into the deep layer of the encoder network to obtain context-aware semantic change information of multi-scale and multi-receptive fields, it can guide the network to better locate significant change areas during the learning process, and reduce network false detection and missed detection. CFEM extracts difference information from the features of dual-temporal remote sensing images between each level, better learning the edge features and texture features of the change features. FRM enables the network to capture change features in both spatial and channel dimensions, eliminates and suppresses redundant features, and weights the feature extraction for the next time step, thereby improving the network’s detection accuracy.
- 3.
- Extensive experiments on two remote sensing image change detection datasets show that compared with other deep learning-based change detection algorithms, our proposed SAFNet network demonstrates robustness and high precision.
2. Materials and Methods
2.1. Proposed Approach
2.1.1. Network Architecture
2.1.2. Global Semantic Module (GSM)
2.1.3. Change Feature Extraction Module (CFEM)
2.1.4. Feature Refinement Module (FRM)
2.1.5. Temporal Interaction Module (TIM)
2.2. Datasets
2.2.1. BICD
2.2.2. CDD
2.2.3. LEVIR-CD
2.3. Implementation Details
2.3.1. Evaluation Metrics
2.3.2. Experimental Details
3. Results
3.1. Network Structure Selection
3.2. Ablation Experiments on BICD
- (1)
- Ablation experiment of CSM: By introducing CSM into the deep layer of the decoder network and fully utilizing global information to capture change information, we generate a low-resolution semantic change map. This map can guide the repair of shallow texture information and help the network reduce missed detections and false detections during the decoding phase. The experimental results in Table 2 show that GSM improves the scores of F1 and MIoU by 0.73% and 1.79% over the backbone network, proving the effectiveness of GSM.
- (2)
- Ablation experiment of TIM: In order to reduce the accumulation of incorrect predictions in subsequent blocks, our proposed TIM can enable feature feedback between two time steps to enhance the network’s perception of changing targets, and to repair the details of changing areas, thereby increasing the accuracy of feature learning. The experimental results in Table 2 show that our proposed TIM improves the scores of F1 and MIoU by 0.22% and 0.36%.
- (3)
- Ablation experiment of CFEM: To extract important change features from bi-temporal remote sensing images, our proposed CFEM performs change feature extraction via absolute difference operations, improving the learning of edge features and texture features of changing areas, thus enhancing the network’s discriminative ability. The experimental results in Table 2 show that our proposed CFEM improves the scores of F1 and MIoU by 0.27% and 0.44%, demonstrating the effectiveness of our proposed module.
- (4)
- Ablation experiment of FRM: To fuse channel information and spatial information, our proposed FRM enables the network to simultaneously capture change features in both spatial and channel dimensions, removes and suppresses redundant features, and then weights feature extraction for the next time step, thereby improving the network’s detection accuracy. The experimental results in Table 2 show that our proposed FRM improves the scores of F1 and MIoU by 0.19% and 0.33%, demonstrating the effectiveness of our proposed module. At the same time, we use Figure 8 to illustrate the effectiveness of the FRM module more intuitively. The figure shows the heat map effect of adding FRM and not adding FRM. It can be seen that after the introduction of FRM, the network effectively solves the problem of fuzzy edge details of changing targets and the false detection of tiny targets.
3.3. Comparison Experiments with Different Algorithms on BICD
3.4. Generalization Experiments on the CDD Dataset
3.5. Generalization Experiments on the LEVIR-CD Dataset
4. Discussion
4.1. Advantages of the Proposed Method
4.2. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Liu, F.; Zhao, X.; Wang, X.; Shi, L.; Xu, J.; Yu, S.; Wen, Q.; Zuo, L.; Yi, L.; et al. Urban expansion in China based on remote sensing technology: A review. Chin. Geogr. Sci. 2018, 28, 727–743. [Google Scholar]
- Albalawi, E.K.; Kumar, L. Using remote sensing technology to detect, model and map desertification: A review. J. Food Agric. Environ. 2013, 11, 791–797. [Google Scholar]
- Zhao, S.; Wang, Q.; Li, Y.; Liu, S.; Wang, Z.; Zhu, L.; Wang, Z. An overview of satellite remote sensing technology used in China’s environmental protection. Earth Sci. Inform. 2017, 10, 137–148. [Google Scholar] [CrossRef]
- Tong, Q.; Xue, Y.; Zhang, L. Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 70–91. [Google Scholar] [CrossRef]
- Weng, L.; Pang, K.; Xia, M.; Lin, H.; Qian, M.; Zhu, C. Sgformer: A Local and Global Features Coupling Network for Semantic Segmentation of Land Cover. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6812–6824. [Google Scholar] [CrossRef]
- Chen, K.; Xia, M.; Lin, H.; Qian, M. Multi-scale Attention Feature Aggregation Network for Cloud and Cloud Shadow Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 3283435. [Google Scholar] [CrossRef]
- Dai, X.; Xia, M.; Weng, L.; Hu, K.; Lin, H.; Qian, M. Multi-Scale Location Attention Network for Building and Water Segmentation of Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 3276703. [Google Scholar] [CrossRef]
- Ji, H.; Xia, M.; Zhang, D.; Lin, H. Multi-Supervised Feature Fusion Attention Network for Clouds and Shadows Detection. ISPRS Int. J. Geo-Inf. 2023, 12, 247. [Google Scholar] [CrossRef]
- Chen, J.; Xia, M.; Wang, D.; Lin, H. Double Branch Parallel Network for Segmentation of Buildings and Waters in Remote Sensing Images. Remote Sens. 2023, 15, 1536. [Google Scholar] [CrossRef]
- Song, L.; Xia, M.; Weng, L.; Lin, H.; Qian, M.; Chen, B. Axial cross attention meets CNN: Bibranch fusion network for change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 32–43. [Google Scholar] [CrossRef]
- Wang, D.; Weng, L.; Xia, M.; Lin, H. MBCNet: Multi-Branch Collaborative Change-Detection Network Based on Siamese Structure. Remote Sens. 2023, 15, 2237. [Google Scholar] [CrossRef]
- Ma, C.; Weng, L.; Xia, M.; Lin, H.; Qian, M.; Zhang, Y. Dual-branch network for change detection of remote sensing image. Eng. Appl. Artif. Intell. 2023, 123, 106324. [Google Scholar] [CrossRef]
- Wing, M.G.; Burnett, J.D.; Sessions, J. Remote sensing and unmanned aerial system technology for monitoring and quantifying forest fire impacts. Int. J. Remote Sens. Appl. 2014, 4, 18–35. [Google Scholar] [CrossRef]
- Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow. Comput. Geosci. 2021, 157, 104940. [Google Scholar] [CrossRef]
- Miao, S.; Xia, M.; Qian, M.; Zhang, Y.; Liu, J.; Lin, H. Cloud/shadow segmentation based on multi-level feature enhanced network for remote sensing imagery. Int. J. Remote Sens. 2022, 43, 5940–5960. [Google Scholar] [CrossRef]
- Koltunov, A.; Ustin, S. Early fire detection using non-linear multitemporal prediction of thermal imagery. Remote Sens. Environ. 2007, 110, 18–28. [Google Scholar] [CrossRef]
- Chen, B.; Xia, M.; Qian, M.; Huang, J. MANet: A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images. Int. J. Remote Sens. 2022, 43, 5874–5894. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Weng, L.; Lin, H. Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image. Sustainability 2023, 15, 3034. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C. Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods. Remote Sens. Environ. 2010, 114, 1676–1686. [Google Scholar] [CrossRef]
- Hu, K.; Li, M.; Xia, M.; Lin, H. Multi-Scale Feature Aggregation Network for Water Area Segmentation. Remote Sens. 2022, 14, 206. [Google Scholar] [CrossRef]
- Torres-Vera, M.; Prol-Ledesma, R.; García-López, D. Three decades of land use variations in Mexico City. Int. J. Remote Sensinginternational J. Remote Sens. 2009, 30, 117–138. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Lin, H.; Qian, M.; Zhang, Y. FENet: Feature enhancement network for land cover classification. Int. J. Remote Sens. 2023, 44, 1702–1725. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, E.; Xia, M.; Weng, L.; Lin, H. Mcanet: A multi-branch network for cloud/snow segmentation in high-resolution remote sensing images. Remote Sens. 2023, 15, 1055. [Google Scholar] [CrossRef]
- Lu, C.; Xia, M.; Qian, M.; Chen, B. Dual-branch network for cloud and cloud shadow segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote Sens. 2022, 16, 16513. [Google Scholar]
- Hu, K.; Zhang, D.; Xia, M.; Qian, M.; Chen, B. LCDNet: Light-weighted cloud detection network for high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4809–4823. [Google Scholar] [CrossRef]
- Ke, L.; Lin, Y.; Zeng, Z.; Zhang, L.; Meng, L. Adaptive change detection with significance test. IEEE Access 2018, 6, 27442–27450. [Google Scholar] [CrossRef]
- Rignot, E.J.; Van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef]
- Kuncheva, L.I.; Faithfull, W.J. PCA feature extraction for change detection in multidimensional unlabeled data. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 69–80. [Google Scholar] [CrossRef]
- Deng, J.; Wang, K.; Deng, Y.; Qi, G. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef] [PubMed]
- Guiming, S.; Jidong, S. Remote sensing image edge-detection based on improved Canny operator. In Proceedings of the 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 4–6 June 2016; pp. 652–656. [Google Scholar]
- Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef]
- He, P.; Shi, W.; Zhang, H.; Hao, M. A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens. Lett. 2014, 5, 396–403. [Google Scholar] [CrossRef]
- Thonfeld, F.; Feilhauer, H.; Braun, M.; Menz, G. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 131–140. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Hou, B.; Liu, G. Using combined difference image and k-means clustering for SAR image change detection. IEEE Geosci. Remote Sens. Lett. 2013, 11, 691–695. [Google Scholar] [CrossRef]
- Luppino, L.T.; Bianchi, F.M.; Moser, G.; Anfinsen, S.N. Unsupervised image regression for heterogeneous change detection. arXiv 2019, arXiv:1909.05948. [Google Scholar] [CrossRef]
- Zhang, C.; Weng, L.; Ding, L.; Xia, M.; Lin, H. CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery. Remote Sens. 2023, 15, 1664. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 125–138. [Google Scholar] [CrossRef]
- Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change detection based on deep siamese convolutional network for optical aerial images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, G.; Chen, K.; Yan, M.; Sun, X. Triplet-based semantic relation learning for aerial remote sensing image change detection. IEEE Geosci. Remote Sens. Lett. 2018, 16, 266–270. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Song, L.; Xia, M.; Jin, J.; Qian, M.; Zhang, Y. SUACDNet: Attentional change detection network based on siamese U-shaped structure. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102597. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, D.; Sha, J.; Gao, L.; Liu, L.; Zhang, Y.; Rong, X. Spectral–spatial–temporal transformers for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Ning, H.; Lu, X. Cascaded attention-induced difference representation learning for multispectral change detection. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103366. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Chen, G.; Dai, F.; Gong, Y.; Zhu, K. Change detection based on Faster R-CNN for high-resolution remote sensing images. Remote Sens. Lett. 2018, 9, 923–932. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O. DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102591. [Google Scholar] [CrossRef]
- Shu, Q.; Pan, J.; Zhang, Z.; Wang, M. DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102940. [Google Scholar] [CrossRef]
- Yin, H.; Weng, L.; Li, Y.; Xia, M.; Hu, K.; Lin, H.; Qian, M. Attention-guided siamese networks for change detection in high resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103206. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Hu, K.; Li, J.; Lu, M.; Weng, L.; Xia, M. FedGCN: Federated Learning-Based Graph Convolutional Networks for Non-Euclidean Spatial Data. Mathematics 2022, 10, 100. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015): 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings—Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A deep learning architecture for visual change detection. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1194–1206. [Google Scholar] [CrossRef]
- Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote Sens. 2020, 12, 2669. [Google Scholar] [CrossRef]
- Chu, S.; Li, P.; Xia, M. MFGAN: Multi feature guided aggregation network for remote sensing image. Neural Comput. Appl. 2022, 34, 10157–10173. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Li, Z.; Tang, C.; Wang, L.; Zomaya, A.Y. Remote sensing change detection via temporal feature interaction and guided refinement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Zhou, M. Multireceiver SAS imagery with generalized PCA. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3286180. [Google Scholar] [CrossRef]
- Jiang, N.; Du, H.; Ge, S.; Zhu, J.; Feng, D.; Wang, J.; Huang, X. High-Resolution Azimuth Missing Data SAR Imaging Based on Sparse Representation Autofocusing. Remote Sens. 2023, 15, 3425. [Google Scholar] [CrossRef]
Method | PA (%) | PR (%) | RC (%) | F1 (%) | MIoU (%) |
---|---|---|---|---|---|
Early Fusion | 95.72 | 88.15 | 78.64 | 82.57 | 83.14 |
Siamese | 95.89 | 89.75 | 79.12 | 84.09 | 83.31 |
Method | PA (%) | PR (%) | RC (%) | F1 (%) | MIoU (%) |
---|---|---|---|---|---|
Backbone | 95.09 | 88.54 | 77.73 | 82.78 | 80.39 |
Backbone + GSM | 95.59 | 88.87 | 78.75 | 83.51 | 82.18 |
Backbone + GSM + TIM | 95.69 | 89.57 | 78.62 | 83.73 | 82.54 |
Backbone + GSM + TIM + CFEM | 95.81 | 89.48 | 78.99 | 83.90 | 82.98 |
Backbone + GSM + TIM + CFEM + FRM | 95.89 | 89.75 | 79.12 | 84.09 | 83.31 |
Method | PA (%) | PR (%) | RC (%) | F1 (%) | MIoU (%) |
---|---|---|---|---|---|
TIM_(t = 1) | 95.55 | 88.63 | 79.01 | 83.54 | 82.48 |
TIM_(t = 1,t = 2) | 95.89 | 89.75 | 79.12 | 84.09 | 83.31 |
Method | PA (%) | PR (%) | RC (%) | F1 (%) | MIoU (%) |
---|---|---|---|---|---|
PCA-Means [31] | 86.32 | 28.66 | 12.53 | 17.43 | 48.82 |
FC-Siam-Diff [53] | 90.79 | 77.63 | 46.26 | 57.97 | 64.51 |
FC-EF | 90.23 | 73.26 | 43.24 | 54.37 | 65.94 |
FC-Siam-Conc | 91.45 | 78.18 | 47.55 | 59.14 | 68.66 |
Unet [54] | 92.57 | 81.36 | 69.73 | 75.09 | 72.59 |
FCN-8s [55] | 93.02 | 81.67 | 72.75 | 76.95 | 74.38 |
ChangNet [56] | 94.14 | 88.57 | 77.11 | 82.44 | 76.49 |
DASNet [57] | 94.84 | 89.34 | 75.46 | 81.82 | 79.93 |
TCD-Net [58] | 95.24 | 88.28 | 74.03 | 80.53 | 81.13 |
MFGAN [59] | 95.44 | 87.99 | 76.18 | 81.66 | 82.09 |
BIT [60] | 95.78 | 89.51 | 75.68 | 82.02 | 82.89 |
TFI-GR [61] | 95.63 | 88.87 | 77.92 | 83.04 | 82.96 |
SAGNet | 95.82 | 89.36 | 78.28 | 83.45 | 83.93 |
SAFNet (our) | 95.89 | 89.75 | 79.12 | 84.09 | 83.31 |
Method | PA (%) | PR (%) | RC (%) | F1 (%) | MIoU (%) |
---|---|---|---|---|---|
PCA-Means | 80.35 | 39.36 | 25.88 | 31.23 | 39.53 |
FC-EF | 94.39 | 85.31 | 59.86 | 70.35 | 52.38 |
FC-Siam-Diff | 94.92 | 84.32 | 63.51 | 72.45 | 53.27 |
FC-Siam-Conc | 94.78 | 83.69 | 64.32 | 72.74 | 53.88 |
FCN-8s | 97.01 | 83.13 | 75.06 | 78.89 | 68.19 |
Unet | 97.66 | 84.24 | 74.57 | 79.11 | 68.83 |
DASNet | 97.47 | 84.85 | 89.79 | 87.25 | 70.21 |
ChangNet | 97.64 | 82.27 | 90.21 | 86.07 | 70.93 |
TCD-Net | 97.39 | 83.65 | 91.32 | 87.32 | 71.72 |
MFGAN | 97.37 | 83.76 | 92.83 | 88.05 | 72.21 |
TFI-GR | 97.58 | 84.53 | 92.63 | 88.41 | 72.39 |
BIT | 97.49 | 83.57 | 93.88 | 88.43 | 73.01 |
SAFNet(our) | 97.67 | 85.32 | 94.06 | 89.48 | 73.36 |
Method | PA (%) | PR (%) | RC (%) | F1 (%) | MIoU (%) |
---|---|---|---|---|---|
PCA-Means | 78.63 | 12.34 | 45.69 | 19.43 | 33.96 |
DASNet | 98.57 | 90.35 | 84.23 | 87.19 | 87.43 |
ChangNet | 98.48 | 90.54 | 86.98 | 88.72 | 86.64 |
BIT | 98.62 | 90.26 | 88.51 | 89.38 | 89.19 |
TFI-GR | 98.68 | 92.01 | 88.08 | 90.01 | 89.37 |
SAFNet(our) | 98.87 | 92.49 | 88.93 | 90.67 | 89.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Ma, C.; Weng, L.; Xia, M.; Lin, H. Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture. Remote Sens. 2023, 15, 4186. https://doi.org/10.3390/rs15174186
Yin H, Ma C, Weng L, Xia M, Lin H. Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture. Remote Sensing. 2023; 15(17):4186. https://doi.org/10.3390/rs15174186
Chicago/Turabian StyleYin, Hongyang, Chong Ma, Liguo Weng, Min Xia, and Haifeng Lin. 2023. "Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture" Remote Sensing 15, no. 17: 4186. https://doi.org/10.3390/rs15174186
APA StyleYin, H., Ma, C., Weng, L., Xia, M., & Lin, H. (2023). Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture. Remote Sensing, 15(17), 4186. https://doi.org/10.3390/rs15174186