Mid-Long-Term Prediction of Surface Seawater Organic Carbon in the Southern South China Sea Based on Multi-Applicability CNN-LSTM Prediction Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing
2.2. CNN-LSTM Model
2.3. Trend Analysis
3. Results
3.1. Correlation Analysis of Indicators
3.2. Parameter Optimization of CNN-LSTM
3.2.1. Spatial Correlation
3.2.2. Training Process
3.3. Single-Step Prediction
3.4. Long-Term Prediction and Interannual Trend Analysis of Organic Carbon
3.4.1. Mid-Long Term Prediction of POC
3.4.2. Mid-Long-Term Prediction of CDOM
3.5. Trend Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegenthaler, U.; Sarmiento, J. Atmospheric Carbon-Dioxide and the Ocean. Nature 1993, 365, 119–125. [Google Scholar]
- Wu, K.; Dai, M.; Chen, J.; Meng, F.; Li, X.; Liu, Z.; Du, C.; Gan, J. Dissolved Organic Carbon in the South China Sea and Its Exchange with the Western Pacific Ocean. Deep Sea Res. Part II-Top. Stud. Oceanogr. 2015, 122, 41–51. [Google Scholar]
- Mopper, K.; Zhou, X.; Kieber, R.; Kieber, D.; Sikorski, R.; Jones, R. Photochemical Degradation of Dissolved Organic-Carbon and Its Impact on the Oceanic Carbon-Cycle. Nature 1991, 353, 60–62. [Google Scholar]
- Hansell, D.A.; Carlson, C.A. Marine Dissolved Organic Matter and the Carbon Cycle. Oceanography 2001, 14, 41–49. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Cooper, W.J.; Durako, M.J.; Kahn, A.E.; Gonsior, M.; Young, H. Characterization of Dissolved Organic Matter Fluorescence in the South Atlantic Bight with Use of PARAFAC Model: Relationships between Fluorescence and Its Components, Absorption Coefficients and Organic Carbon Concentrations. Mar. Chem. 2010, 118, 22–36. [Google Scholar]
- Cai, P.; Zhao, D.; Wang, L.; Huang, B.; Dai, M. Role of Particle Stock and Phytoplankton Community Structure in Regulating Particulate Organic Carbon Export in a Large Marginal Sea. J. Geophys. Res. Oceans 2015, 120, 2063–2095. [Google Scholar]
- Shih, Y.Y.; Hung, C.C.; Tuo, S.; Shao, H.J.; Chow, C.H.; Muller, F.L.L.; Cai, Y.H. The Impact of Eddies on Nutrient Supply, Diatom Biomass and Carbon Export in the Northern South China Sea. Front. Earth Sci. 2020, 8, 537332. [Google Scholar]
- Eppley, R.W.; Peterson, B.J. Particulate Organic Matter Flux and Planktonic New Production in the Deep Ocean. Nature 1979, 282, 677–680. [Google Scholar]
- Pan, X.; Wong, G.T.F. An Improved Algorithm for Remotely Sensing Marine Dissolved Organic Carbon: Climatology in the Northern South China Sea Shelf-Sea and Adjacent Waters. Deep Sea Res. Part II-Top. Stud. Oceanogr. 2015, 117, 131–142. [Google Scholar]
- Lee, D.; Son, S.; Joo, H.; Kim, K.; Kim, M.J.; Jang, H.K.; Yun, M.S.; Kang, C.K.; Lee, S.H. Estimation of the Particulate Organic Carbon to Chlorophyll-a Ratio Using MODIS-Aqua in the East/Japan Sea, South Korea. Remote Sens. 2020, 12, 840. [Google Scholar]
- Hansell, D.A.; Carlson, C.A. Net Community Production of Dissolved Organic Carbon. Glob. Biogeochem. Cycles 1998, 12, 443–453. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef]
- Butman, D.; Raymond, P.A. Significant Efflux of Carbon Dioxide from Streams and Rivers in the United States. Nat. Geosci. 2011, 4, 839–842. [Google Scholar] [CrossRef]
- Ren, W.; Tian, H.; Cai, W.J.; Lohrenz, S.E.; Hopkinson, C.S.; Huang, W.J.; Yang, J.; Tao, B.; Pan, S.; He, R. Century-Long Increasing Trend and Variability of Dissolved Organic Carbon Export from the Mississippi River Basin Driven by Natural and Anthropogenic Forcing. Glob. Biogeochem. Cycles 2016, 30, 1288–1299. [Google Scholar] [CrossRef]
- Carlson, C.; Ducklow, H.; Michaels, A. Annual Flux of Dissolved Organic-Carbon from the Euphotic Zone in the Northwestern Sargasso Sea. Nature 1994, 371, 405–408. [Google Scholar] [CrossRef]
- Dunne, J.P.; Sarmiento, J.L.; Gnanadesikan, A.A. Synthesis of Global Particle Export from the Surface Ocean and Cycling through the Ocean Interior and on the Seafloor. Glob. Biogeochem. Cycles 2007, 21, GB4006. [Google Scholar] [CrossRef]
- Ducklow, H.W.; Steinberg, D.K.; Buesseler, K.O. Upper Ocean Carbon Export and the Biological Pump. Oceanography 2001, 14, 50–58. [Google Scholar] [CrossRef]
- Abell, J.; Emerson, S.; Renaud, P. Distributions of TOP, TON and TOC in the North Pacific Subtropical Gyre: Implications for Nutrient Supply in the Surface Ocean and Remineralization in the Upper Thermocline. J. Mar. Res. 2000, 58, 203–222. [Google Scholar] [CrossRef]
- Doval, M.; Hansell, D.A. Organic Carbon and Apparent Oxygen Utilization in the Western South Pacific and the Central Indian Oceans. Mar. Chem. 2000, 68, 249–264. [Google Scholar] [CrossRef]
- Emerson, S. Annual Net Community Production and the Biological Carbon Flux in the Ocean. Glob. Biogeochem. Cycles 2014, 28, 14–28. [Google Scholar] [CrossRef]
- Walsh, J. Importance of Continental Margins in the Marine Biogeochemical Cycling of Carbon and Nitrogen. Nature 1991, 350, 53–55. [Google Scholar] [CrossRef]
- Cai, W.J. Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration? Ann. Rev. Mar. Sci. 2011, 3, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Sexton, P.F.; Norris, R.D.; Wilson, P.A.; Paelike, H.; Westerhold, T.; Roehl, U.; Bolton, C.T.; Gibbs, S. Eocene Global Warming Events Driven by Ventilation of Oceanic Dissolved Organic Carbon. Nature 2011, 471, 349. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.A.; Wang, S.L.; Wang, B.J.; Pai, S.C. Nutrient Budgets for the South China Sea Basin. Mar. Chem. 2001, 75, 281–300. [Google Scholar] [CrossRef]
- Wong, G.T.F.; Ku, T.L.; Mulholland, M.; Tseng, C.M.; Wang, D.P. The SouthEast Asian Time-Series Study (SEATS) and the Biogeochemistry of the South China Sea–An Overview. Deep Sea Res. Part II-Top. Stud. Oceanogr. 2007, 54, 1434–1447. [Google Scholar] [CrossRef]
- Dai, M.; Meng, F.; Tang, T.; Kao, S.J.; Lin, J.; Chen, J.; Huang, J.C.; Tian, J.; Gan, J.; Yang, S. Excess Total Organic Carbon in the Intermediate Water of the South China Sea and Its Export to the North Pacific. Geochem. Geophys. Geosyst. 2009, 10, Q12002. [Google Scholar] [CrossRef]
- Dai, M.; Cao, Z.; Guo, X.; Zhai, W.; Liu, Z.; Yin, Z.; Xu, Y.; Gan, J.; Hu, J.; Du, C. Why Are Some Marginal Seas Sources of Atmospheric CO2? Geophys. Res. Lett. 2013, 40, 2154–2158. [Google Scholar] [CrossRef]
- Wang, C.; Guo, W.; Li, Y.; Stubbins, A.; Li, Y.; Song, G.; Wang, L.; Cheng, Y. Hydrological and Biogeochemical Controls on Absorption and Fluorescence of Dissolved Organic Matter in the Northern South China Sea. J. Geophys. Res. Biogeosci. 2017, 122, 3405–3418. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, H.; Guan, Y.; Zhang, L.; Jia, R.; Sun, P.; Yang, Y.; Zhang, Z.; Zhang, Q. Distribution, Spectral Characteristics, and Seasonal Variation of Dissolved Organic Matter in the Northern Beibu Gulf, South China Sea. Front. Mar. Sci. 2022, 9, 1023953. [Google Scholar] [CrossRef]
- Schleyer, M.H.; Kruger, A.; Celliers, L. Long-Term Community Changes on a High-Latitude Coral Reef in the Greater St Lucia Wetland Park, South Africa. Mar. Pollut. Bull. 2008, 56, 493–502. [Google Scholar] [CrossRef]
- Savini, A.; Vertino, A.; Marchese, F.; Beuck, L.; Freiwald, A. Mapping Cold-Water Coral Habitats at Different Scales within the Northern Ionian Sea (Central Mediterranean): An Assessment of Coral Coverage and Associated Vulnerability. PLoS ONE 2014, 9, e87108. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Yang, H.; Liu, Q. Particulate Organic Carbon and Its Composition in Jiaozhou Bay. In Studies of the Biogeochemistry of Typical Estuaries and Bays in China; Springer: Berlin/Heidelberg, Germany, 2019; pp. 227–235. [Google Scholar]
- Liu, Q.; Kandasamy, S.; Wang, H.; Wang, L.; Lin, B.; Gao, A.; Chen, C.T.A. Impact of Hydrological Conditions on the Biogeochemical Dynamics of Suspended Particulate Organic Matter in the Upper Mixed Layer of the Southern East China Sea. J. Geophys. Res. Oceans 2019, 124, 6120–6140. [Google Scholar] [CrossRef]
- Marwick, T.R.; Tamooh, F.; Teodoru, C.R.; Borges, A.V.; Darchambeau, F.; Bouillon, S. The Age of River-Transported Carbon: A Global Perspective. Glob. Biogeochem. Cycles 2015, 29, 122–137. [Google Scholar] [CrossRef]
- van Pinxteren, M.; Barthel, S.; Fomba, K.W.; Mueller, K.; von Tuempling, W.; Herrmann, H. The Influence of Environmental Drivers on the Enrichment of Organic Carbon in the Sea Surface Microlayer and in Submicron Aerosol Particles–Measurements from the Atlantic Ocean. Elem. Sci. Anthr. 2017, 5, 35. [Google Scholar] [CrossRef]
- Diesing, M.; Kroger, S.; Parker, R.; Jenkins, C.; Mason, C.; Weston, K. Predicting the Standing Stock of Organic Carbon in Surface Sediments of the North-West European Continental Shelf. Biogeochemistry 2017, 135, 183–200. [Google Scholar] [CrossRef]
- Seiter, K.; Hensen, C.; Schroter, E.; Zabel, M. Organic Carbon Content in Surface Sediments–Defining Regional Provinces. Deep-Sea Res. Part. Oceanogr. Res. Pap. 2004, 51, 2001–2026. [Google Scholar] [CrossRef]
- Dzierzbicka-Glowacka, L.; Kulinski, K.; Maciejewska, A.; Jakacki, J.; Pempkowiak, J. Numerical Modelling of POC Dynamics in the Southern Baltic under Possible Future Conditions Determined by Nutrients, Light and Temperature. Oceanologia 2011, 53, 971–992. [Google Scholar] [CrossRef]
- Yang, F.; Song, G.; Massicotte, P.; Wei, H.; Xie, H. Depth-Resolved Photochemical Lability of Dissolved Organic Matter in the Western Tropical Pacific Ocean. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005425. [Google Scholar] [CrossRef]
- Jeandel, C.; van Der Loeff, M.R.; Lam, P.J.; Roy-Barman, M.; Sherrell, R.M.; Kretschmer, S.; German, C.; Dehairs, F. What Did We Learn about Ocean Particle Dynamics in the GEOSECS–JGOFS Era? Prog. Oceanogr. 2015, 133, 6–16. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Aitkenhead-Peterson, J.A.; McDowell, W.H.; Smart, R.P.; Cresser, M.S. Modelling DOC Export from Watersheds in Scotland Using Neural Networks. Comput. Geosci. 2007, 33, 423–436. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, Y.; Zhang, Y.; Guo, T.; He, Z.; Chen, J. GIS and ANN-Based Spatial Prediction of DOC in River Networks: A Case Study in Dongjiang, Southern China. Environ. Earth Sci. 2013, 68, 1495–1505. [Google Scholar] [CrossRef]
- Birkel, C.; Soulsby, C.; Tetzlaff, D. Integrating Parsimonious Models of Hydrological Connectivity and Soil Biogeochemistry to Simulate Stream DOC Dynamics. J. Geophys. Res. Biogeosci. 2014, 119, 1030–1047. [Google Scholar] [CrossRef]
- Banoub, M.W. Ultra Violet Absorption as a Measure of Organic Matter in Natural Waters in Bodensee. Arch. Hydrobiol. 1973, 71, 159–165. [Google Scholar]
- Stewart, A.J.; Wetzel, R.G. Asymmetrical Relationships between Absorbance, Fluorescence, and Dissolved Organic Carbon 1. Limnol. Oceanogr. 1981, 26, 590–597. [Google Scholar] [CrossRef]
- Marhaba, T.F.; Bengraine, K.; Pu, Y.; Aragó, J. Spectral Fluorescence Signatures and Partial Least Squares Regression: Model to Predict Dissolved Organic Carbon in Water. J. Hazard. Mater. 2003, 97, 83–97. [Google Scholar] [CrossRef]
- Carter, H.T.; Tipping, E.; Koprivnjak, J.F.; Miller, M.P.; Cookson, B.; Hamilton-Taylor, J. Freshwater DOM Quantity and Quality from a Two-Component Model of UV Absorbance. Water Res. 2012, 46, 4532–4542. [Google Scholar] [CrossRef] [PubMed]
- Mannino, A.; Russ, M.E.; Hooker, S.B. Algorithm Development and Validation for Satellite-Derived Distributions of DOC and CDOM in the US Middle Atlantic Bight. J. Geophys. Res. Oceans 2008, 113, C07051. [Google Scholar] [CrossRef]
- Hoge, F.E.; Williams, M.E.; Swift, R.N.; Yungel, J.K.; Vodacek, A. Satellite Retrieval of the Absorption Coefficient of Chromophoric Dissolved Organic Matter in Continental Margins. J. Geophys. Res. Oceans 1995, 100, 24847–24854. [Google Scholar] [CrossRef]
- Asmala, E.; Stedmon, C.A.; Thomas, D.N. Linking CDOM Spectral Absorption to Dissolved Organic Carbon Concentrations and Loadings in Boreal Estuaries. Estuar. Coast. Shelf Sci. 2012, 111, 107–117. [Google Scholar] [CrossRef]
- Tehrani, N.C.; D’Sa, E.J.; Osburn, C.L.; Bianchi, T.S.; Schaeffer, B.A. Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case Study for the Northern Gulf of Mexico. Remote Sens. 2013, 5, 1439–1464. [Google Scholar] [CrossRef]
- Ferrari, G.M. The Relationship between Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon in the European Atlantic Coastal Area and in the West Mediterranean Sea (Gulf of Lions). Mar. Chem. 2000, 70, 339–357. [Google Scholar] [CrossRef]
- Nelson, N.B.; Siegel, D.A. The Global Distribution and Dynamics of Chromophoric Dissolved Organic Matter. Ann. Rev. Mar. Sci. 2013, 5, 447–476. [Google Scholar] [CrossRef] [PubMed]
- Hestir, E.L.; Brando, V.; Campbell, G.; Dekker, A.; Malthus, T. The Relationship between Dissolved Organic Matter Absorption and Dissolved Organic Carbon in Reservoirs along a Temperate to Tropical Gradient. Remote Sens. Environ. 2015, 156, 395–402. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Tilstone, G.H.; Zablocka, M.; Roettgers, R.; Thomas, R. Composition of Dissolved Organic Matter along an Atlantic Meridional Transect from Fluorescence Spectroscopy and Parallel Factor Analysis. Mar. Chem. 2013, 157, 170–184. [Google Scholar] [CrossRef]
- Catala, T.S.; Alvarez-Salgado, X.A.; Otero, J.; Iuculano, F.; Companys, B.; Horstkotte, B.; Romera-Castillo, C.; Nieto-Cid, M.; Latasa, M.; Moran, X.A.G.; et al. Drivers of Fluorescent Dissolved Organic Matter in the Global Epipelagic Ocean. Limnol. Oceanogr. 2016, 61, 1101–1119. [Google Scholar] [CrossRef]
- Iuculano, F.; Alvarez-Salgado, X.A.; Otero, J.; Catala, T.S.; Sobrino, C.; Duarte, C.M.; Agusti, S. Patterns and Drivers of UV Absorbing Chromophoric Dissolved Organic Matter in the Euphotic Layer of the Open Ocean. Front. Mar. Sci. 2019, 6, 320. [Google Scholar] [CrossRef]
- Spencer, R.G.M.; Ahad, J.M.E.; Baker, A.; Cowie, G.L.; Ganeshram, R.; Upstill-Goddard, R.C.; Uher, G. The Estuarine Mixing Behaviour of Peatland Derived Dissolved Organic Carbon and Its Relationship to Chromophoric Dissolved Organic Matter in Two North Sea Estuaries (UK). Estuar. Coast. Shelf Sci. 2007, 74, 131–144. [Google Scholar] [CrossRef]
- Massicotte, P.; Asmala, E.; Stedmon, C.; Markager, S. Global Distribution of Dissolved Organic Matter along the Aquatic Continuum: Across Rivers, Lakes and Oceans. Sci. Total Environ. 2017, 609, 180–191. [Google Scholar] [CrossRef]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Hansell, D.A.; Lorenzi-Kayser, M. Global Distribution and Dynamics of Colored Dissolved and Detrital Organic Materials. J. Geophys. Res. Oceans 2002, 107, 3228. [Google Scholar] [CrossRef]
- Johannessen, S.C.; Miller, W.L.; Cullen, J.J. Calculation of UV Attenuation and Colored Dissolved Organic Matter Absorption Spectra from Measurements of Ocean Color. J. Geophys. Res. Oceans 2003, 108, 3301. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R.A. Novel Method to Estimate DOC Concentrations from CDOM Absorption Coefficients in Coastal Waters. Geophys. Res. Lett. 2011, 38, L03610. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Zhang, J.; Song, K.; Mu, G.; Sun, C.; Ju, H.; Ji, M. The Relationship of Chromophoric Dissolved Organic Matter Parallel Factor Analysis Fluorescence and Polycyclic Aromatic Hydrocarbons in Natural Surface Waters. Environ. Sci. Pollut. Res. 2018, 25, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Wang, T. Effects of Land Use on the Characteristics and Composition of Fluvial Chromophoric Dissolved Organic Matter (CDOM) in the Yiluo River Watershed, China. Ecol. Indic. 2020, 114, 106332. [Google Scholar] [CrossRef]
- Li, D.; Pan, B.; Han, X.; Li, J.; Zhu, Q.; Li, M. Assessing the Potential to Use CDOM as an Indicator of Water Quality for the Sediment-Laden Yellow River, China. Environ. Pollut. 2021, 289, 117970. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhan, H.; Du, Y. Seasonal and Interannual Variability of Surface CDOM in the South China Sea Associated with El Nino. J. Mar. Syst. 2011, 85, 86–95. [Google Scholar] [CrossRef]
- Gardner, W.D.; Mishonov, A.V.; Richardson, M.J. Global POC Concentrations from In-Situ and Satellite Data. Deep Sea Res. Part II-Top. Stud. Oceanogr. 2006, 53, 718–740. [Google Scholar] [CrossRef]
- Lorenzoni, L.; Hu, C.; Varela, R.; Arias, G.; Guzman, L.; Muller-Karger, F. Bio-Optical Characteristics of Cariaco Basin (Caribbean Sea) Waters. Cont. Shelf Res. 2011, 31, 582–593. [Google Scholar] [CrossRef]
- Liu, N.; Chen, S.; Cheng, Z.; Wang, X.; Xiao, Y.; Xiao, L.; Gong, Y.; Wang, T.; Zhang, X.; Liu, S. Long-Term Prediction of Sea Surface Chlorophyll-a Concentration Based on the Combination of Spatio-Temporal Features. Water Res. 2022, 211, 118040. [Google Scholar]
- Hu, W.J.; Jiang, W.W.; Hao, T.Y.; Xu, Y.; Zhao, B.M. Integrated geophysical research on the distribution of Pre-Cenozoic residual basins in the South China Sea. Chin. J. Geophys. Chin. Ed. 2011, 54, 3315–3324. [Google Scholar]
- Chu, P.C.; Fan, C.W.; Lozano, C.J.; Kerling, J.L. An Airborne Expendable Bathythermograph Survey of the South China Sea, May 1995. J. Geophys. Res. Oceans 1998, 103, 21637–21652. [Google Scholar] [CrossRef]
- Pan, X.; Wong, G.T.F.; Shiah, F.K.; Ho, T.Y. Enhancement of Biological Productivity by Internal Waves: Observations in the Summertime in the Northern South China Sea. J. Oceanogr. 2012, 68, 427–437. [Google Scholar] [CrossRef]
- Pan, X.; Wong, G.T.F.; Ho, T.Y.; Shiah, F.K.; Liu, H. Remote Sensing of Picophytoplankton Distribution in the Northern South China Sea. Remote Sens. Environ. 2013, 128, 162–175. [Google Scholar] [CrossRef]
- Ho, T.Y.; Pan, X.; Yang, H.H.; Wong, G.T.F.; Shiah, F.K. Controls on Temporal and Spatial Variations of Phytoplankton Pigment Distribution in the Northern South China Sea. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2015, 117, 65–85. [Google Scholar] [CrossRef]
- Callahan, J.; Dai, M.H.; Chen, R.F.; Li, X.L.; Lu, Z.M.; Huang, W. Distribution of Dissolved Organic Matter in the Pearl River Estuary, China. Mar. Chem. 2004, 89, 211–224. [Google Scholar] [CrossRef]
- Dai, M.; Liu, H.X.; Liao, X.L.; Li, K.Z.; Yan, J.G.; Qi, H.Z.; Huang, H.H. Characteristics of net phytoplankton community and their relationships to environmental factors in the waters around Nansha Islands. J. Appl. Ecol. 2013, 24, 3553–3560. [Google Scholar]
- Qu, T.; Song, Y.T.; Yamagata, T. An Introduction to the South China Sea Throughflow: Its Dynamics, Variability, and Application for Climate. Dyn. Atmos. Ocean 2009, 47, 3–14. [Google Scholar] [CrossRef]
- Yan, H.; Yu, K.; Shi, Q.; Tan, Y.; Zhang, H.; Zhao, M.; Li, S.; Chen, T.; Huang, L.; Wang, P. Coral Reef Ecosystems in the South China Sea as a Source of Atmospheric CO2 in Summer. Chin. Sci. Bull. 2011, 56, 676–684. [Google Scholar] [CrossRef]
- Chai, F.; Liu, G.; Xue, H.; Shi, L.; Chao, Y.; Tseng, C.M.; Chou, W.C.; Liu, K.K. Seasonal and Interannual Variability of Carbon Cycle in South China Sea: A Three-Dimensional Physical-Biogeochemical Modeling Study. J. Oceanogr. 2009, 65, 703–720. [Google Scholar] [CrossRef]
- Sun, Q.; Tang, D.; Legendre, L.; Shi, P. Enhanced Sea-Air CO2 Exchange Influenced by a Tropical Depression in the South China Sea. J. Geophys. Res.-Oceans 2014, 119, 6792–6804. [Google Scholar] [CrossRef]
- Boss, E.; Pegau, W.S.; Zaneveld, J.R.V.; Barnard, A.H. Spatial and Temporal Variability of Absorption by Dissolved Material at a Continental Shelf. J. Geophys. Res. Oceans 2001, 106, 9499–9507. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible Domains. Limnol Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Seferian, R.; Bopp, L.; Gehlen, M.; Swingedouw, D.; Mignot, J.; Guilyardi, E.; Servonnat, J. Multiyear Predictability of Tropical Marine Productivity. Proc. Natl. Acad. Sci. USA 2014, 111, 11646–11651. [Google Scholar] [CrossRef] [PubMed]
- Stramski, D.; Reynolds, R.A.; Babin, M.; Kaczmarek, S.; Lewis, M.R.; Roettgers, R.; Sciandra, A.; Stramska, M.; Twardowski, M.S.; Franz, B.A.; et al. Relationships between the Surface Concentration of Particulate Organic Carbon and Optical Properties in the Eastern South Pacific and Eastern Atlantic Oceans. Biogeosciences 2008, 5, 171–201. [Google Scholar] [CrossRef]
- Cui, W.S.; Pan, D.L.; Bai, Y.; He, X.Q.; Zhu, Q.K.; Hu, Z.F.; Li, T.; Gong, F.; Zhang, L. Satellite Views of the Seasonal and Interannual Variations of the Particulate Organic Carbon in the Northern South China Sea. Hai Yang Xue Bao 2017, 39, 122–134. [Google Scholar]
- Kim, J.; Jang, W.; Kim, J.H.; Lee, J.; Cho, K.H.; Lee, Y.G.; Chon, K.; Park, S.; Pyo, J.; Park, Y.; et al. Application of Airborne Hyperspectral Imagery to Retrieve Spatiotemporal CDOM Distribution Using Machine Learning in a Reservoir. Int. J. Appl. Earth Obs. Geoinform. 2022, 114, 103053. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, S.; Meng, F.; Fan, X. Inversion of yellow substance concentration and its spatialtemporal variation analysis in Ledong waters, South China Sea. Glob. Geol. 2017, 36, 305–310. (In Chinese) [Google Scholar]
- Tassan, S. Local Algorithms Using Seawifs Data for the Retrieval of Phytoplankton, Pigments, Suspended Sediment, and Yellow Substance in Coastal Waters. Appl. Opt. 1994, 33, 2369–2378. [Google Scholar] [CrossRef]
- Hung, J.J.; Wang, S.M.; Chen, Y.L. Biogeochemical Controls on Distributions and Fluxes of Dissolved and Particulate Organic Carbon in the Northern South China Sea. Deep Sea Res. Part II-Top. Stud. Oceanogr. 2007, 54, 1486–1503. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Li, Y.; Zhou, H.; Stubbins, A.; Dahlgren, R.A.; Wang, Z.; Guo, W. Dissolved Organic Matter Dynamics in the Epipelagic Northwest Pacific Low-Latitude Western Boundary Current System: Insights from Optical Analyses. J. Geophys. Res. Oceans 2021, 126, e2021JC017458. [Google Scholar] [CrossRef]
- Alford, M.H.; Peacock, T.; MacKinnon, J.A.; Nash, J.D.; Buijsman, M.C.; Centuroni, L.R.; Chao, S.Y.; Chang, M.H.; Farmer, D.M.; Fringer, O.B.; et al. The Formation and Fate of Internal Waves in the South China Sea. Nature 2015, 521, 65–69. [Google Scholar] [CrossRef]
- Ma, H.; Yang, W.; Zhang, L.; Zhang, R.; Chen, M.; Qiu, Y.; Zheng, M. Utilizing 210 P o Deficit to Constrain Particle Dynamics in Mesopelagic Water, Western S Outh C Hina S Ea. Geochem. Geophys. Geosyst. 2017, 18, 1594–1607. [Google Scholar] [CrossRef]
- Liu, K.K.; Kao, S.J.; Hu, H.C.; Chou, W.C.; Hung, G.W.; Tseng, C.M. Carbon Isotopic Composition of Suspended and Sinking Particulate Organic Matter in the Northern South China Sea–From Production to Deposition. Deep Sea Res. Part II-Top. Stud. Oceanogr. 2007, 54, 1504–1527. [Google Scholar] [CrossRef]
- Li, Y.; Song, G.; Massicotte, P.; Yang, F.; Li, R.; Xie, H. Distribution, Seasonality, and Fluxes of Dissolved Organic Matter in the Pearl River (Zhujiang) Estuary, China. Biogeosciences 2019, 16, 2751–2770. [Google Scholar] [CrossRef]
- Nelson, N.B.; Siegel, D.A.; Michaels, A.F. Seasonal Dynamics of Colored Dissolved Material in the Sargasso Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 1998, 45, 931–957. [Google Scholar] [CrossRef]
- Moran, M.A.; Zepp, R.G. Role of Photoreactions in the Formation of Biologically Labile Compounds from Dissolved Organic Matter. Limnol. Oceanogr. 1997, 42, 1307–1316. [Google Scholar] [CrossRef]
- Sharpless, C.M.; Blough, N.V. The Importance of Charge-Transfer Interactions in Determining Chromophoric Dissolved Organic Matter (CDOM) Optical and Photochemical Properties. Environ. Sci. Process. Impacts 2014, 16, 654–671. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Perdue, E.M.; Green, N.W.; Chen, H.; Mopper, K. Photochemical Bleaching of Oceanic Dissolved Organic Matter and Its Effect on Absorption Spectral Slope and Fluorescence. Mar. Chem. 2013, 155, 81–91. [Google Scholar] [CrossRef]
- Vodacek, A.; Blough, N.V.; DeGrandpre, M.D.; Peltzer, E.T.; Nelson, R.K. Seasonal Variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial Inputs and Photooxidation. Limnol. Oceanogr. 1997, 42, 674–686. [Google Scholar] [CrossRef]
POC (mg/m3) | CDOM (m−1) | |
---|---|---|
MAE | 1.68 | 0.272 |
MSE | 5.84 | 0.136 |
Index | Trend Test | Actual Value | Predicted Value | |
---|---|---|---|---|
POC | M-K test | Z | 1.16 | 0.160 |
P | 0.320 | 0.250 | ||
Least squares | k | 1.84 × 10−2 | 3.28 × 10−3 | |
b | 39.1 | 41.6 | ||
CDOM | M-K test | Z | 0.452 | −0.376 |
P | 0.608 | 0.234 | ||
Least squares | k | 1.31 × 10−3 | 3.69 × 10−4 | |
b | 1.34 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Zhang, K.; Yu, J.; Chen, S.; Zheng, H. Mid-Long-Term Prediction of Surface Seawater Organic Carbon in the Southern South China Sea Based on Multi-Applicability CNN-LSTM Prediction Model. Remote Sens. 2023, 15, 4218. https://doi.org/10.3390/rs15174218
Liu N, Zhang K, Yu J, Chen S, Zheng H. Mid-Long-Term Prediction of Surface Seawater Organic Carbon in the Southern South China Sea Based on Multi-Applicability CNN-LSTM Prediction Model. Remote Sensing. 2023; 15(17):4218. https://doi.org/10.3390/rs15174218
Chicago/Turabian StyleLiu, Na, Kuncheng Zhang, Jing Yu, Shaoyang Chen, and Hao Zheng. 2023. "Mid-Long-Term Prediction of Surface Seawater Organic Carbon in the Southern South China Sea Based on Multi-Applicability CNN-LSTM Prediction Model" Remote Sensing 15, no. 17: 4218. https://doi.org/10.3390/rs15174218
APA StyleLiu, N., Zhang, K., Yu, J., Chen, S., & Zheng, H. (2023). Mid-Long-Term Prediction of Surface Seawater Organic Carbon in the Southern South China Sea Based on Multi-Applicability CNN-LSTM Prediction Model. Remote Sensing, 15(17), 4218. https://doi.org/10.3390/rs15174218