Two-Level Feature-Fusion Ship Recognition Strategy Combining HOG Features with Dual-Polarized Data in SAR Images
Abstract
:1. Introduction
2. Two-Level Feature-Fusion Ship Recognition Strategy
2.1. HOG Feature Extraction
2.2. Network Structure
2.2.1. Backbone Network
2.2.2. Feature Fusion Processing
2.2.3. Loss Function
3. Experimental Results and Analysis
3.1. Experimental Setup
3.2. Evaluating Indicator
3.3. Experiment and Analysis
3.3.1. Recognition Performance
3.3.2. Model Parameter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; An, D.; Chen, L.; Feng, D.; Zhou, Z. An NSST-Based Fusion Method for Airborne Dual-Frequency, High-Spatial-Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4362–4370. [Google Scholar] [CrossRef]
- Ge, B.; An, D.; Liu, J.; Feng, D.; Chen, L.; Zhou, Z. Modified Adaptive 2-D Calibration Algorithm for Airborne Multichannel SAR-GMTI. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Luo, Y.; An, D.; Wang, W.; Chen, L.; Huang, X. Local Road Area Extraction in CSAR Imagery Exploiting Improved Curvilinear Structure Detector. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Hu, X.; Xie, H.; Zhang, L.; Hu, J.; He, J.; Yi, S.; Jiang, H.; Xie, K. Fast Factorized Backprojection Algorithm in Orthogonal Elliptical Coordinate System for Ocean Scenes Imaging Using Geosynchronous Spaceborne–Airborne VHF UWB Bistatic SAR. Remote Sens. 2023, 15, 2215. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, H.; Chen, J.; Zhang, J.; Wang, G.; Xie, K. Arbitrary-Oriented Ship Detection Method Based on Long-Edge Decomposition Rotated Bounding Box Encoding in SAR Images. Remote Sens. 2023, 15, 673. [Google Scholar] [CrossRef]
- Li, B.; Liu, B.; Huang, L.; Guo, W.; Zhang, Z.; Yu, W. OpenSARShip 2.0: A large-volume Dataset for Deeper Interpretation of Ship Targets in Sentinel-1 Imagery. In Proceedings of the SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–5. [Google Scholar]
- Ma, H.; Shao, L.; Jin, X.; Xu, G.L. Advances in Ship Target Recognition Technology. Sci. Technol. Rev. 2019, 37, 65–78. [Google Scholar]
- Dong, J.; Li, Y.; Deng, B. Ship Targets Recognition by Ships Feature in SAR Image. J. Shaanxi Norm. Univ. 2014, 32, 203–205. [Google Scholar]
- Wang, B.; Thomas, B. Generic, Model-Based Estimation and Detection of Peaks in Image Surfaces. In Proceedings of the Image Understanding Workshop, Palm Springs, CA, USA, 12–15 February 1996; pp. 913–922. [Google Scholar]
- Xi, Y.; Xiong, G.; Yu, W. Feature-loss Double Fusion Siamese Network for Dual-polarized SAR Ship Classification. In Proceedings of the IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–5. [Google Scholar]
- He, J.; Chang, W.; Wang, F.; Wang, Q.; Li, Y.; Gan, Y. Polarization Matters: On Bilinear Convolutional Neural Networks for Ship Classification from Synthetic Aperture Radar Images. In Proceedings of the International Conference on Natural Language Processing (ICNLP), Xi’an, China, 25–27 March 2022; pp. 315–319. [Google Scholar]
- He, J.; Chang, W.; Wang, F.; Liu, Y.; Wang, Y.; Liu, H.; Li, Y.; Liu, L. Group Bilinear CNNs for Dual-Polarized SAR Ship Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, T.; Ke, X. A Dual-Polarization Information-Guided Network for SAR Ship Classification. Remote Sens. 2023, 15, 2138. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Liu, C.; Xu, X.; Zhan, X.; Wang, C.; Ahmad, I.; Zhou, Y.; Pan, D.; et al. HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for SAR Ship Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–22. [Google Scholar] [CrossRef]
- Lin, H.; Song, S.; Yang, J. Ship Classification Based on MSHOG Feature and Task-driven Dictionary Learning with Structured Incoherent Constraints in SAR Images. Remote Sens. 2018, 10, 190. [Google Scholar] [CrossRef]
- Lin, T.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-Grained Visual Recognition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 1449–1457. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, J.; Xie, H.; Zhang, L.; Hu, J.; Jiang, H.; Wang, G. SAR and Optical Image Registration Based on Deep Learning with Co-Attention Matching Module. Remote Sens. 2023, 15, 3879. [Google Scholar] [CrossRef]
Methods | Modes | Precision | Recall | F1 |
---|---|---|---|---|
Mainstream classification network | ResNet18 | 0.6267 | 0.6590 | 0.6331 |
ResNet34 | 0.6212 | 0.6545 | 0.6312 | |
ResNet50 | 0.6210 | 0.6597 | 0.6152 | |
DenseNet121 | 0.6332 | 0.6630 | 0.6389 | |
DenseNet161 | 0.6371 | 0.6706 | 0.6436 | |
VGG16 | 0.6319 | 0.6670 | 0.6306 | |
MobileNet-v2 | 0.5989 | 0.6438 | 0.5974 | |
AlexNet | 0.6332 | 0.6653 | 0.6258 | |
Transformer | ViT | 0.6078 | 0.6434 | 0.5826 |
ResNet50ViT | 0.6213 | 0.6586 | 0.6261 | |
Siamese network architecture | SiamShipCLSNet (Mul) | 0.6582 | 0.6816 | 0.6612 |
SiamShipCLSNet (Group-bilinear) | 0.6658 | 0.6905 | 0.6707 | |
Proposed method | HOG-SiamShipCLSNet | 0.6787 | 0.7017 | 0.6822 |
Methods | Modes | Model Parameter |
---|---|---|
Mainstream classification network | ResNet18 | 11.80 M |
ResNet34 | 21.29 M | |
ResNet50 | 23.52 M | |
DenseNet121 | 6.96 M | |
DenseNet161 | 26.48 M | |
VGG16 | 134.28 M | |
Mobillenet-v2 | 5.64 M | |
AlexNet | 57.02 M | |
Transformer | ViT | 12.76 M |
ResNet50ViT | 9.95 M | |
Siamese network architecture | SiamShipCLSNet (Mul) | 2.23 M |
SiamShipCLSNet (Group-bilinear) | 1.97 M | |
Proposed method | HOG-SiamShipCLSNet | 7.81 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; He, J.; Lu, Z.; Hu, J. Two-Level Feature-Fusion Ship Recognition Strategy Combining HOG Features with Dual-Polarized Data in SAR Images. Remote Sens. 2023, 15, 4393. https://doi.org/10.3390/rs15184393
Xie H, He J, Lu Z, Hu J. Two-Level Feature-Fusion Ship Recognition Strategy Combining HOG Features with Dual-Polarized Data in SAR Images. Remote Sensing. 2023; 15(18):4393. https://doi.org/10.3390/rs15184393
Chicago/Turabian StyleXie, Hongtu, Jinfeng He, Zheng Lu, and Jun Hu. 2023. "Two-Level Feature-Fusion Ship Recognition Strategy Combining HOG Features with Dual-Polarized Data in SAR Images" Remote Sensing 15, no. 18: 4393. https://doi.org/10.3390/rs15184393
APA StyleXie, H., He, J., Lu, Z., & Hu, J. (2023). Two-Level Feature-Fusion Ship Recognition Strategy Combining HOG Features with Dual-Polarized Data in SAR Images. Remote Sensing, 15(18), 4393. https://doi.org/10.3390/rs15184393