Double Inversion Layers Affect Fog–Haze Events over Eastern China—Based on Unmanned Aerial Vehicles Observation
Abstract
:1. Introduction
2. Observation and Analysis
2.1. Observation Site
2.2. Observation Data of Ground Meteorological Elements and Air Pollutants
2.3. UAV Platforms
2.4. Background Data
3. Results
3.1. Synoptic Situations
3.2. Surface Meteorological Conditions and Air Pollution
3.3. Vertical Distributions of Temperature Inversion and RH in the Boundary Layer
3.4. Wind Fields in the Boundary Layer
4. Discussion
4.1. Boundary-Layer Features during the Fog Processes
4.2. Relationship of Fog Process and Surface Air Pollution with Temperature Inversion
4.3. Analysis of Pollutant Sources
5. Conclusions
- The mass concentrations of near-surface air pollutants were greatly influenced by the fog, whose variations were consistent with the VIS changes in the fogging process. After the formation of heavy fog, the particle mass concentrations decreased (PM2.5: 97 μg/m3; PM10: 150 μg/m3) (increased) as VIS decreased (VIS: 72 m) (increased). During the dissipation stage of fog (VIS: 1000 m), the particle mass concentration increased rapidly, which reached a peak when the fog process ended (PM2.5: 213 μg/m3; PM10: 300 μg/m3).
- The double temperature inversion significantly affected the fog process, and the strengthening of the lower-level temperature inversion (from 1 to 2 °C per 100 m to 3–4 °C per 100 m) corresponded to the explosive growth of fog (the fog was quickly generated). The intensity variation in the upper-level temperature inversion affected the VIS change in the fog process. In the fog process, the bottom height of the upper-level temperature inversion layer continued to decrease, resulting in an increase in the thickness of the inversion layer. The fog process ended after the dissipation of the upper-level temperature inversion. Decreases in the VIS for the two fog processes corresponded to the strengthening of the near-surface temperature inversion, and the dissipation of fog corresponded to the weakening of the near-surface temperature inversion.
- The thickness of the fog layer obviously affected the concentrations of air pollutants near the surface. The mass concentrations of particles decreased as the fog layer thickness increased and were maintained, while the mass concentrations of particles increased as the fog layer thickness decreased. The relationships between the changes in PM2.5 mass concentrations and the fog layer thickness were consistent for these two fog processes. The variation in PM10 mass concentrations was also related to the wind field in the boundary layer, and the downdraft had a great impact on the mass concentrations of coarse particles.
- The thermal and dynamic conditions of the first fog process are relatively inadequate, and sufficient moisture is the main reason for the maintenance of the fog process. The boundary layer water vapor condition of the second fog process is relatively insufficient, but the deep inversion layer and weak dynamic disturbance make the fog process maintain for a long time. The maintenance of the near-surface temperature inversion with an intensity above 2 °C per 100 m contributed to the difference in the durations of the two fog processes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alizadeh-Choobari, O.; Bidokhti, A.A.; Ghafarian, P.; Najafi, M.S. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmos. Environ. 2016, 141, 443–453. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Alizadeh, O.; Khoshsima, M.; Pierleoni, A. Aerosol properties, trends and classification of key types over the Middle East from satellite-derived atmospheric optical data. Atmos. Environ. 2021, 246, 118100. [Google Scholar] [CrossRef]
- Hassan, E.M.; Alizadeh, O. Dust events in southwestern Iran: Estimation of PM10 concentration based on horizontal visibility during dust events. Int. J. Climatol. 2022, 42, 5159–5172. [Google Scholar] [CrossRef]
- Rangognio, J.; Tulet, P.; Bergot, T.; Gomes, L.; Thouron, O.; Leriche, M. Influence of aerosols on the formation and development of radiation fog. Atmos. Chem. Phys. Discuss. 2009, 9, 17963–18019. [Google Scholar]
- Zhu, Y.; Zhu, C.; Zu, F.; Wang, H.; Yuan, C.; Jiao, S.; Zhou, L. A Persistent Fog Event Involving Heavy Pollutants in Yancheng Area of Jiangsu Province. Adv. Meteorol. 2018, 2018, 2512138. [Google Scholar] [CrossRef]
- Yu, X.; Ma, J.; An, J.; Yuan, L.; Zhu, B.; Liu, D.; Wang, J.; Yang, Y.; Cui, H. Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China. J. Clean. Prod. 2016, 131, 112–120. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, J.; Xin, J.; Zhang, W.; Vilà-Guerau de Arellano, J.; Wang, S.; Zhao, D.; Dai, L.; Ma, Y.; Wu, X.; et al. The stove, dome, and umbrella effects of atmospheric aerosol on the development of the planetary boundary layer in hazy regions. Geophys. Res. Lett. 2020, 47, e2020GL087373. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, J.; Wang, Z.; Tian, Y.; Wu, L.; Tang, G.; Zhang, W.; Vilà-Guerau de Arellano, J.; Zhao, D.; Jia, D.; et al. How do aerosols above the residual layer affect the planetary boundary layer height? Sci. Total Environ. 2022, 814, 151953. [Google Scholar] [CrossRef]
- Zhao, D.; Xin, J.; Gong, C.; Quan, J.; Wang, Y.; Tang, G.; Ma, Y.; Dai, L.; Wu, X.; Liu, G.; et al. The impact threshold of the aerosol radiative forcing on the boundary layer structure in the pollution region. Atmos. Chem. Phys. 2021, 21, 5739–5753. [Google Scholar] [CrossRef]
- Ren, Z.H.; Yu, Y.; Han, R.; Feng, M.N. Analysis of Continuity of Fog, Light Fog and Haze Climate Series by Automatic Identification and Manual Observation. Plateau Meteorol. 2018, 37, 863–871. [Google Scholar]
- Wang, T.S.; Niu, S.J.; Lü, J.J.; Zhou, Y. Observational Study on the Supercooled Fog Droplet Spectrum Distribution and Icing Accumulation Mechanism in Lushan, Southeast China. Adv. Atmos. Sci. 2019, 36, 29–40. [Google Scholar] [CrossRef]
- Wang, H.B.; Wu, H.; Li, Y.; Xu, J.P.; Zu, F.; Zhang, Z.W. Validation of Rotorcraft UAV Boundary Layer Meteorological Observation Data and Its Application in a Heavy Fog Event in Yancheng. Meteor. Mon. 2020, 46, 89–97. [Google Scholar]
- Xu, W.H. Analysis of Visibility Model of PM; Pollution Based on Atmospheric Circulation. Environ. Sci. Manag. 2019, 44, 18–21. [Google Scholar]
- Wang, Y.; Wang, L.L.; Zhao, G.N.; Wang, Y.S.; An, J.L.; Liu, Z.R.; Tang, G.Q. Analysis of Different-Scales Circulation Patterns and Boundary Layer Structure of PM2.5 Heavy Pollutions in Beijing during Winter. Clim. Environ. Res. 2014, 19, 173–184. [Google Scholar]
- Chen, G.; Fang, C.H. Diagnostic analysis of a heavy fog event in November of 2009 in the south of Jiangsu province. J. Meteorol. Environ. 2011, 27, 54–57. [Google Scholar]
- Liu, D.Y.; Yan, W.L.; Kang, Z.M.; Liu, A.N.; Zhu, Y. Boundary-layer features and regional transport process of an extreme haze pollution event in Nanjing, China. Atmos. Pollut. Res. 2018, 9, 1088–1099. [Google Scholar] [CrossRef]
- Huang, H.J.; Liu, H.; Huang, J.; Mao, W.; Bi, X. Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Mon. Weather. Rev. 2015, 143, 1907–1923. [Google Scholar] [CrossRef]
- Liu, D.; Yan, W.; Yang, J.; Pu, M.; Niu, S.; Li, Z. A Study of the Physical Processes of an Advection Fog Boundary Layer. Boundary-Layer. Meteorol. 2016, 158, 125–138. [Google Scholar] [CrossRef]
- Egli, S.; Maier, F.; Bendix, J.; Thies, B. Vertical distribution of microphysical properties in radiation fogs—A case study. Atmos. Res. 2015, 151, 130–145. [Google Scholar] [CrossRef]
- Li, L.; Yin, Y.; Gu, X.S.; Chen, K.; Tan, W.; Yang, L.; Yuan, L. Observational Study of Cloud Condensation Nuclei Properties at Various Altitudes of Huangshan Mountains. Chin. J. Atmos. Sci. 2014, 38, 410–420. [Google Scholar]
- Liu, D.; Liu, X.; Wang, H.; Li, Y.; Kang, Z.; Cao, L.; Yu, X.; Chen, H. A New Type of Haze? The December 2015 Purple (Magenta) Haze Event in Nanjing, China. Atmosphere 2017, 8, 76. [Google Scholar] [CrossRef]
- Xu, W.; Song, W.; Zhang, Y.; Liu, X.; Zhang, L.; Zhao, Y.; Liu, D.; Tang, A.; Yang, D.; Wang, D.; et al. Air quality improvement in a megacity: Implications from 2015 Beijing Parade Blue pollution control actions. Atmos. Chem. Phys. 2017, 17, 31–46. [Google Scholar] [CrossRef]
- Wu, B.G.; Zhang, H.S.; Zhang, C.C.; Zhu, H.; Wang, Z.Y.; Xie, Y.Y. Characteristics of Turbulent Transfer and Its Temporal Evolution during an Advection Fog Period in North China. Chin. J. Atmos. Sci. 2010, 34, 440–448. [Google Scholar]
- Zhang, E.H.; Zhu, B.; Cao, Y.C.; Wang, H.L. Analysis of the Visibility Change in the Yangtze River Delta Region in Recent 30 Years. Meteor. Mon. 2012, 38, 943–949. [Google Scholar]
- Zhou, Y.K.; Zhu, B.; Han, Z.W.; Pan, C.; Guo, T.; Wei, J.F.; Liu, D.Y. Analysis of visibility characteristics and connecting factors over the Yangtze River Delta Region during winter time. China Environ. Sci. 2016, 36, 660–669. [Google Scholar]
- Xiao, X.; Fan, S.J.; Su, R. Characteristics of a regional air pollution process over the Pearl River Delta during October 2011. Acta Sci. Circumst. 2014, 34, 290–296. [Google Scholar]
- Zhang, S.T.; Wang, M.J.; Liu, Y.M.; Chen, X.L.; Fan, Q. Numerical Simulation and Conceptual Model Establishment of Fogs over Pearl River Estuary, China. J. Trop. Meteorol. 2016, 32, 467–476. [Google Scholar]
- Zhu, Y.; Wu, Z.; Park, Y.; Fan, X.; Bai, D.; Zong, P.; Qin, B.; Cai, X.; Ahn, K.H. Measurements of atmospheric aerosol vertical distribution above North China Plain using hexacopter. Sci. Total Environ. 2019, 665, 1095–1102. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, B.; Lu, W.; Yan, S.; Fang, C.; Liu, X.; Liu, D.; Liu, C. Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China. Sci. Total Environ. 2021, 756, 144135. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chang, C.C.; Chen, W.N.; Tsai, Y.J.; Chang, S.Y. Determination of the vertical profile of aerosol chemical species in the microscale urban environment. Environ. Pollut. 2018, 243, 1360–1367. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Tao, X.; Deng, L.; Fang, X.; Liu, Y.; Luo, L.; Zhang, Z.; Xiao, H.; Xiao, H. An observational study of the boundary-layer entrainment and impact of aerosol radiative effect under aerosol-polluted conditions. Atmos. Res. 2021, 250, 105348. [Google Scholar] [CrossRef]
- Shen, L.; Cheng, Y.; Bai, X.; Dai, H.S.; Wei, X.L.; Sun, L.S.; Yang, Y.X.; Zhang, J.S.; Feng, Y.; Li, Y.J.; et al. Vertical profile of aerosol number size distribution during a haze pollution episode in Hefei, China. Sci. Total Environ. 2022, 814, 152693. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, D.; Kang, Z.; Shi, Y.; Liu, M. Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018. Atmosphere 2021, 12, 111. [Google Scholar] [CrossRef]
- Wang, B.N.; Pu, M.J.; Miao, Q. Analysis of the characteristics and variation of pollutant concentrations for a long-lasting fog and haze event in the Jiangsu area. Trans. Atmos. Sci. 2016, 39, 243–252. [Google Scholar]
- Sun, Y.; Zhuang, G.; Tang, A.A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef]
- Wu, S.; Tao, J.; Ma, N.; Kuang, Y.; Zhang, Y.; He, Y.; Sun, Y.; Xu, W.; Hong, J.; Xie, L.; et al. Particle number size distribution of PM1 and PM10 in fogs and implications on fog droplet evolutions. Atmos. Environ. 2022, 277, 119086. [Google Scholar] [CrossRef]
- Liu, D.Y.; Zhang, J.; Wu, X.P.; Yan, W.L.; Zhou, B.; Xie, Z.Z. Characteristics and sources of atmospheric pollutants during a fog-haze process in Huai’an. Trans. Atmos. Sci. 2014, 37, 484–492. [Google Scholar]
- Cui, L.K.; Song, X.Q.; Zhong, G.Q. Comparative Analysis of Three Methods for HYSPLIT Atmospheric Trajectories Clustering. Atmosphere 2021, 12, 698. [Google Scholar] [CrossRef]
- Shin, J.; Kim, D.; Noh, Y. Estimation of Aerosol Extinction Coefficient Using Camera Images and Application in Mass Extinction Efficiency Retrieval. Remote Sens. 2022, 14, 1224. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, H.; Kang, H.; Wang, J.; An, J.; Yu, X.; Lv, J.; Zhu, B. A new method for calculating average visibility from the relationship between extinction coefficient and visibility. Atmos. Meas. Tech. 2022, 15, 7259–7264. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. China Environmental Science Press: Beijing, China, 2012.
- Qian, J.L.; Liu, D.Y.; Yan, S.Q.; Cheng, M.M.; Liao, R.W.; Niu, S.J.; Yan, W.L.; Zha, S.Y.; Wang, L.L.; Chen, X.X. Fog Scavenging of Particulate Matters in Air Pollution Events: Observation and Simulation in the Yangtze River Delta, China. Sci. Total Environ. 2023, 876, 162728. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.Z.; Xu, J.; Zhang, Z.Z.; Tang, J.R.; Cheng, M.M. Characteristics of fog layer during heavy pollution in winter in Beijing. J. Environ. Eng. Technol. 2022, 12, 975–984. [Google Scholar]
- Wu, D.; Liao, B.T.; Wu, M.; Chen, H.Z.; Wang, Y.C.; Liao, X.N.; Gu, Y.; Zhang, X.L.; Zhao, X.J.; Quan, J.N.; et al. The long rerm trend of haze and fog days and the surface layer transport conditions under haze weather in North China. Acta Sci. Circumst. 2014, 34, 1–11. [Google Scholar]
Observation Element | Range of Observation | Resolution | Maximum Permissible Error |
---|---|---|---|
air temperature (°C) | −40~40 | 0.1 | ±0.2 |
RH (%) | 10~100 | 1 | ±3 (<80); ±5 (>80) |
Wind speed (m/s) | 0.5~60 | 0.1 | ±(0.5 + 0.03 V) |
wind direction (°) | 0~360 | 1 | ±5 |
Part Number | Starting and Ending Time | Duration | Fog–Haze Event | The Minimum Visibility | PM2.5 (μg/m3) | PM10 (μg/m3) | ||
---|---|---|---|---|---|---|---|---|
(h) | (m) | Mean Value | Range | Mean Value | Range | |||
1 | 17:00 BJT 10–04:55 BJT 11 | 11.9 | moderate haze, heavy haze | 1000 | 131.5 | 115–145 | 172.4 | 150–187 |
2 | 05:00–09:40 BJT 11 | 4.7 | fog | 45 | 108 | 97–128 | 168 | 150–209 |
3 | 09:41–23:45 BJT 11 | 14.1 | moderate haze, heavy haze | 1000 | 259.7 | 205–206 | 308.1 | 253–359 |
4 | 23:48 BJT 11–10:30 BJT 12 | 10.7 | fog | 42 | 266.1 | 196–306 | 341.4 | 306–390 |
5 | 10:31–12:00 BJT 12 | 1.5 | moderate haze, heavy haze | 1000 | 254 | 240–268 | 277 | 253–301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Liu, D.; Yuan, S.; Wu, H.; Zu, F.; Liu, R. Double Inversion Layers Affect Fog–Haze Events over Eastern China—Based on Unmanned Aerial Vehicles Observation. Remote Sens. 2023, 15, 4541. https://doi.org/10.3390/rs15184541
Liu R, Liu D, Yuan S, Wu H, Zu F, Liu R. Double Inversion Layers Affect Fog–Haze Events over Eastern China—Based on Unmanned Aerial Vehicles Observation. Remote Sensing. 2023; 15(18):4541. https://doi.org/10.3390/rs15184541
Chicago/Turabian StyleLiu, Ruolan, Duanyang Liu, Shujie Yuan, Hong Wu, Fan Zu, and Ruixiang Liu. 2023. "Double Inversion Layers Affect Fog–Haze Events over Eastern China—Based on Unmanned Aerial Vehicles Observation" Remote Sensing 15, no. 18: 4541. https://doi.org/10.3390/rs15184541
APA StyleLiu, R., Liu, D., Yuan, S., Wu, H., Zu, F., & Liu, R. (2023). Double Inversion Layers Affect Fog–Haze Events over Eastern China—Based on Unmanned Aerial Vehicles Observation. Remote Sensing, 15(18), 4541. https://doi.org/10.3390/rs15184541