Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. Landsat 8 Imagery
2.2. Airborne Surface Temperature from OIB Observations
2.3. Matching of OIB Observations Data and Landsat 8 Imagery in IWMZ
3. Methods
3.1. Split-Window (SW) Algorithm
3.2. The Traditional Ice-Water Classification Method
3.3. The Adjusted Ice-Water Classification Method
4. Results
4.1. Accuracy Assessment of Surface Temperature Retrieval Based on Landsat IST and OIB IST in IWMZ
4.2. Improvement of Ice Classification Case 1: Landsat 8 Image Dated 14 April 2018
4.3. Improvement of Ice Classification Case 2: Landsat 8 Image Dated 18 March 2014
5. Discussion
5.1. Comparison of Different Algorithms for IST Retrieval
5.2. Comparison of the IST Retrieval with Previous Relevant Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Comiso, J.C.; Meier, W.N.; Gersten, R. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Ocean. 2017, 122, 6883–6900. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005–105015. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L. Arctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 881–889. [Google Scholar] [CrossRef]
- Koo, Y.; Lei, R.; Cheng, Y.; Cheng, B.; Xie, H.; Hoppmann, M.; Kurtz, N.T.; Ackley, S.F.; Mestas-Nuñez, A.M. Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data. Remote Sens. Environ. 2021, 267, 112730. [Google Scholar] [CrossRef]
- Fichefet, T.; Maqueda, M.A.M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. Ocean. 1997, 102, 12609–12646. [Google Scholar] [CrossRef]
- Hall, D.K.; Nghiem, S.V.; Rigor, I.G.; Miller, J.A. Uncertainties of Temperature Measurements on Snow-Covered Land and Sea Ice from In Situ and MODIS Data during BROMEX. J. Appl. Meteorol. Clim. 2015, 54, 966–978. [Google Scholar] [CrossRef]
- Supply, A.; Boutin, J.; Kolodziejczyk, N.; Reverdin, G.; Lique, C.; Vergely, J.L.; Perrot, X. Meltwater Lenses Over the Chukchi and the Beaufort Seas During Summer 2019: From In Situ to Synoptic View. J. Geophys. Res. Ocean. 2022, 127, e2021JC018388. [Google Scholar] [CrossRef]
- Fan, P.; Pang, X.; Zhao, X.; Shokr, M.; Lei, R.; Qu, M.; Ji, Q.; Ding, M. Sea ice surface temperature retrieval from Landsat 8/TIRS: Evaluation of five methods against in situ temperature records and MODIS IST in Arctic region. Remote Sens. Environ. 2020, 248, 111975–111990. [Google Scholar] [CrossRef]
- Vincent, R.F. The Case for a Single Channel Composite Arctic Sea Surface Temperature Algorithm. Remote Sens. 2019, 11, 2393. [Google Scholar] [CrossRef]
- Zheng, X.; Hui, F.; Huang, Z.; Wang, T.; Huang, H.; Wang, Q. Ice/Snow Surface Temperature Retrieval From Chinese FY-3D MERSI-II Data: Algorithm and Preliminary Validation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4512715. [Google Scholar] [CrossRef]
- Comiso, J.C.; Cavalieri, D.J.; Markus, T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 243–252. [Google Scholar] [CrossRef]
- Key, J.; Haefliger, M. Arctic ice surface temperature retrieval from AVHRR thermal channels. J. Geophys. Res. Atmos. 1992, 97, 5885–5893. [Google Scholar] [CrossRef]
- Hall, D.K.; Key, J.R.; Case, K.A.; Riggs, G.A.; Cavalieri, D.J. Sea ice surface temperature product from MODIS. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1076–1087. [Google Scholar] [CrossRef]
- Scambos, T.A.; Haran, T.M.; Massom, R. Validation of Avhrr and Modis ice Surface temperature products using in Situ radiometers. Ann. Glaciol. 2006, 44, 345–351. [Google Scholar] [CrossRef]
- Qu, M.; Pang, X.; Zhao, X.; Zhang, J.; Ji, Q.; Fan, P. Estimation of turbulent heat flux over leads using satellite thermal images. Cryosphere 2019, 13, 1565–1582. [Google Scholar] [CrossRef]
- Zhang, J.; Schweiger, A.; Steele, M.; Stern, H. Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments. J. Geophys. Res. Ocean. 2015, 120, 3484–3498. [Google Scholar] [CrossRef]
- Hall, D.; Box, J.; Casey, K.; Hook, S.; Shuman, C.; Steffen, K. Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens. Environ. 2008, 112, 3739–3749. [Google Scholar] [CrossRef]
- Son, Y.-S.; Kim, H.-c.; Lee, S. ASTER-Derived High-Resolution Ice Surface Temperature for the Arctic Coast. Remote Sens. 2018, 10, 662. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J. An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Jin, M.; Li, J.; Wang, C.; Shang, R. A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from Landsat-8 Data and a Case Study of an Urban Area in China. Remote Sens. 2015, 7, 4371–4390. [Google Scholar] [CrossRef]
- Ru, C.; Duan, S.-B.; Jiang, X.-G.; Li, Z.-L.; Jiang, Y.; Ren, H.; Leng, P.; Gao, M. Land Surface Temperature Retrieval From Landsat 8 Thermal Infrared Data Over Urban Areas Considering Geometry Effect: Method and Application. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5000716. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Shokr, M.E.; Wang, Z.; Zhang, L. An Improved Single-Channel Polar Region Ice Surface Temperature Retrieval Algorithm Using Landsat-8 Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8557–8569. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Key, J.R.; Collins, J.B.; Fowler, C.; Stone, R.S. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 1997, 61, 302–309. [Google Scholar] [CrossRef]
- Key, J.R.; Mahoney, R.; Liu, Y.; Romanov, P.; Tschudi, M.; Appel, I.; Maslanik, J.; Baldwin, D.; Wang, X.; Meade, P. Snow and ice products from Suomi NPP VIIRS. J. Geophys. Res. Atmos. 2013, 118, 12816–12830. [Google Scholar] [CrossRef]
- Fan, P.; Zhao, X.; Qu, M.; Yan, Z.; Chen, Y.; Liang, Z.; Pang, X. Evaluation of the relationships and uncertainties of airborne and ground-based sea ice surface temperature measurements against remotely sensed temperature records. Int. J. Digit. Earth 2022, 15, 1989–2005. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Landsat 8 (L8) Data Users Handbook; LSDS-1574 v.5.0; Department of the Interior U.S. Geological Survey, EROS: Sioux Falls, SD, USA, 2019. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 8 July 2023).
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, V.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Macander, M.J.; Swingley, C.S.; Joly, K.; Raynolds, M.K. Landsat-based snow persistence map for northwest Alaska. Remote Sens. Environ. 2015, 163, 23–31. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003. [Google Scholar]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. In Proceedings of the Earth Observing Systems X, San Diego, CA, USA, 22 August 2005. [Google Scholar]
- Nielsen-Englyst, P.; Høyer, J.L.; Kolbe, W.M.; Dybkjær, G.; Lavergne, T.; Tonboe, R.T.; Skarpalezos, S.; Karagali, I. A combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982–2021. Remote Sens. Environ. 2023, 284, 113331. [Google Scholar] [CrossRef]
- Chen, H.; Meng, X.; Li, L.; Ni, K. Quality Assessment of FY-3D/MERSI-II Thermal Infrared Brightness Temperature Data from the Arctic Region: Application to Ice Surface Temperature Inversion. Remote Sens. 2022, 14, 6392. [Google Scholar] [CrossRef]
b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 |
---|---|---|---|---|---|---|---|
−0.41165 | 1.00522 | 0.14543 | −0.27297 | 4.06655 | −6.92512 | −18.27461 | 0.24468 |
TIRS Channel | Sea Water | Coarse Snow | Medium Snow | Fine Snow | Bare Ice |
---|---|---|---|---|---|
Band 10 | 0.991 | 0.9851 | 0.9907 | 0.9951 | 0.987 |
Average of Snow: 0.990 | |||||
Band 11 | 0.986 | 0.963 | 0.98 | 0.9896 | 0.954 |
Average of Snow: 0.978 |
Landsat IST vs. OIB IST | |||
---|---|---|---|
RMSE (K) | Bias (K) | MAE (K) | |
Landsat IST obtained from the old ice-water classification method | 0.952 | 0.703 | 0.776 |
Landsat IST derived from the adjusted ice-water classification method | 0.749 | 0.333 | 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Wu, Y.; Gong, J.; Fan, P.; Zheng, X.; Zhao, X. Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations. Remote Sens. 2023, 15, 4577. https://doi.org/10.3390/rs15184577
Song L, Wu Y, Gong J, Fan P, Zheng X, Zhao X. Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations. Remote Sensing. 2023; 15(18):4577. https://doi.org/10.3390/rs15184577
Chicago/Turabian StyleSong, Lijuan, Yifan Wu, Jiaxing Gong, Pei Fan, Xiaopo Zheng, and Xi Zhao. 2023. "Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations" Remote Sensing 15, no. 18: 4577. https://doi.org/10.3390/rs15184577
APA StyleSong, L., Wu, Y., Gong, J., Fan, P., Zheng, X., & Zhao, X. (2023). Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations. Remote Sensing, 15(18), 4577. https://doi.org/10.3390/rs15184577