Comprehensive Assessment of Sustainable Development Goal 11 at the Sub-City Scale: A Case Study of Guilin City
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Construction of Sustainable Development Indicator Framework and Methods for Localization
3.2. Indicator System for Urban Sustainable Development Based on SDG 11
3.2.1. Calculation of Single-Indicator Sustainable Development Index
3.2.2. Comprehensive Index Calculation
4. Results
4.1. Quantifying the Development Progress of Specific Goals
4.2. Single-Indicator Analysis
4.2.1. SDG 11.1.1
4.2.2. SDG 11.2.1
4.2.3. SDG 11.3.1
4.2.4. SDG 11.5.1
4.2.5. SDG 11.6.2
4.2.6. SDG 11.7.1
4.3. Analysis of Time Evolution and Spatial Patterns
4.4. Spatio-Temporal Clustering Analysis
4.5. The Sustainable Development Goal Indicators of SDG 11 Exhibit Synergies and Trade-Offs
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- General Assembly of the United Nations. A/RES/70/1: Transforming Our World: The 2030 Agenda for Sustainable Development 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 21 July 2022).
- Jiang, H.; Sun, Z.; Guo, H.; Weng, Q.; Cai, G. An assessment of urbanization sustainability in China between 1990 and 2015 using land use efficiency indicators. npj Urban Sustain. 2021, 1, 34. [Google Scholar] [CrossRef]
- Gomes, S.; Lopes, J.M.; Travassos, M.; Paiva, M.; Cardoso, I.; Peixoto, B.; Duarte, C. Strategic Organizational Sustainability in the Age of Sustainable Development Goals. Sustainability 2023, 15, 10053. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.U. Our World in Data. Available online: https://ourworldindata.org/urbanization (accessed on 15 September 2022).
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 2019, 254, 113650. [Google Scholar] [CrossRef]
- UN-Habitat. Module 3 Indicator 11.3.1 Land Consumption Rate to Population Growth Rate. Available online: https://www.unescap.org/sites/default/files/Module%203_Land%20Consumption%20Rate%20to%20Population%20Growth%20Rate%20for%20indicator%2011.3.pdf (accessed on 11 February 2023).
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, L.; Guo, H.; Weng, Q.; Cao, S.; Zhang, S.; Li, Q. Urban Sprawl and Changes in Land-Use Efficiency in the Beijing-Tianjin-Hebei Region, China from 2000 to 2020: A Spatiotemporal Analysis Using Earth Observation Data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, G.; Wennersten, R.; Frostell, B. Analysis of sustainable urban development approaches in China. Habitat Int. 2014, 41, 24–32. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Ying, Q.; Cheng, X.; Wang, X.; Li, X.; Hu, L. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef]
- Li, C.; Cai, G.; Sun, Z. Urban Land-Use Efficiency Analysis by Integrating LCRPGR and Additional Indicators. Sustainability 2021, 13, 13518. [Google Scholar] [CrossRef]
- Guo, H.; Chen, F.; Sun, Z.; Liu, J.; Liang, D. Big Earth Data: A practice of sustainability science to achieve the Sustainable Development Goals. Sci. Bull. 2021, 66, 1050–1053. [Google Scholar] [CrossRef]
- SDG Index the Sustainable Development Goals Report 2020. Available online: https://unstats.un.org/sdgs (accessed on 23 July 2022).
- SDG Index and Dashboards Report for European Cities. Available online: https://www.sdgindex.org/reports/sdg-index-and-dashboards-report-for-european-cities/ (accessed on 23 July 2022).
- Timko, J.; Le Billon, P.; Zerriffi, H.; Honey-Rosés, J.; de la Roche, I.; Gaston, C.; Sunderland, T.C.; Kozak, R.A. A policy nexus approach to forests and the SDGs: Tradeoffs and synergies. Curr. Opin. Environ. Sustain. 2018, 34, 7–12. [Google Scholar] [CrossRef]
- The State Council on the Construction of the National Sustainable Development Agenda Innovation Demonstration Zone. Available online: https://english.www.gov.cn/policies/latestreleases/202207/15/content_WS62d135c5c6d02e533532e04b.html (accessed on 23 July 2022).
- Ishtiaque, A.; Masrur, A.; Rabby, Y.W.; Jerin, T.; Dewan, A. Remote Sensing-Based Research for Monitoring Progress towards SDG 15 in Bangladesh: A Review. Remote Sens. 2020, 12, 691. [Google Scholar] [CrossRef]
- Chen, J.; Peng, S.; Zhao, X.; Ge, Y.; Li, Z. Measuring regional progress towards SDGs by combining geospatial and statistical information. Acta Geod. Cartogr. Sin. 2019, 48, 473–479. [Google Scholar]
- Wang, P.; Gao, F.; Huang, C.; Song, X.; Wang, B.; Wei, Y.; Niu, Y. Progresson Sustainable City Assessment Index System for SDGs. Remote Sens. Technol. Appl. 2018, 33, 784–792. [Google Scholar]
- Gao, F.; Zhao, X.; Song, X.; Wang, B.; Wang, P.; Niu, Y.; Wang, W.; Huang, C. Connotation and Evaluation Index System of Beautiful China for SDGs. Adv. Earth Sci. 2019, 34, 295–305. [Google Scholar]
- Zhang, C.; Sun, Z.; Xing, Q.; Sun, J.; Xia, T.; Yu, H. Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province. Sustainability 2021, 13, 11092. [Google Scholar] [CrossRef]
- Haughton, G. Developing sustainable urban development models. Cities 1997, 14, 189–195. [Google Scholar] [CrossRef]
- Yang, T.; Jin, Y.; Yan, L.; Pei, P. Aspirations and realities of polycentric development: Insights from multi-source data into the emerging urban form of Shanghai. Environ. Plan. 2019, 46, 1264–1280. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Tang, H.; Yang, P. An urban hierarchy-based approach integrating ecosystem services into multiscale sustainable land use planning: The case of China. Resour. Conserv. Recycl. 2022, 178, 106097. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. The Plan for the Construction of Innovation Demonstration Zones for the Implementation of the 2030 Agenda. Available online: https://www.gov.cn/zhengce/zhengceku/2016-12/13/content_5147412.htm (accessed on 10 February 2023).
- Parnell, S. Defining a Global Urban Development Agenda. World Dev. 2016, 78, 529–540. [Google Scholar] [CrossRef]
- Google Earth Engine. Dataset. Available online: https://developers.google.cn/earth-engine/datasets (accessed on 15 May 2023).
- Atmospheric Composition Analysis Group. China Regional Estimates (V4.CH.03). Available online: http://fizz.phys.dal.ca/~{}atmos/martin/?Page_id=14026 (accessed on 24 August 2022).
- Caprotti, F.; Cowley, R.; Datta, A.; Broto, V.C.; Gao, E.; Georgeson, L.; Herrick, C.; Joss, N.O.S. The New Urban Agenda: Key opportunities and challenges for policy and practice. Urban Res. Pract. 2017, 10, 367–378. [Google Scholar] [CrossRef]
- Habitat, U. Tracking progress towards inclusive, safe, resilient and sustainable cities and human settlements. UN Habitat 2018, 10, 36–38. [Google Scholar]
- Department of Economic and Social Affairs, United Nations. World Urbanization Prospects 2018. Available online: https://population.un.org/wpp/Download/ (accessed on 14 December 2022).
- Wu, M.; Zhao, X.; Sun, Z.; Guo, H. A Hierarchical Multiscale Super-Pixel-Based Classification Method for Extracting Urban Impervious Surface Using Deep Residual Network from WorldView-2 and LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 210–222. [Google Scholar] [CrossRef]
- Deng, W.; Peng, Z.; Tang, Y.T. A Quick Assessment Method to Evaluate Sustainability of Urban Built Environment: Case Studies of Four Large-Sized Chinese Cities. Cities 2019, 89, 57–69. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, H.; Sun, Z.; Zhao, X. Analysis and evaluation of China’s population and land urbanization based on SDG 11.3.1. Land Resour. Intell. 2020, 34, 36–41. [Google Scholar]
- United Nations Statistics Division. The Complete Set of Metadata for Indicators. Available online: https://unstats.un.org/sdgs/metadata/files/SDG-Indicator-metadata.zip (accessed on 12 April 2023).
- United Nations Statistics Division. Sustainable Development Goals Progress Chart 2021. Available online: https://unstats.un.org/sdgs/report/2021/progress-Chart-2021.pdf (accessed on 16 July 2022).
- Psara, O.; Fonseca, F.; Nisiforou, O.; Ramos, R. Evaluation of Urban Sustainability Based on Transportation and Green Spaces: The Case of Limassol, Cyprus. Sustainability 2023, 15, 10563. [Google Scholar] [CrossRef]
- Xing, Q.; Sun, Z.; Jiang, H.; Du, W. Testing the hypothesis on estimating field maize height and above-ground biomass using tower-based gradient wind data. Field Crops Res. 2021, 264, 108081. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Taubenböc, H.; Zhu, X.X. Land consumption in cities: A comparative study across the globe. Cities 2021, 113, 103163. [Google Scholar] [CrossRef]
- Xian, Z.; Wang, Q.; Cheng, J. Progress and consideration of the United Nations Sustainable Development Goals (SDG) statistical monitoring. Stat. Study 2020, 05, 313. [Google Scholar]
- Permana, A.S.; Towolioe, S.; Aziz, N.A.; Ho, C.S. Sustainable solid waste management practices and perceived cleanliness in a low income city. Habitat Int. 2015, 49, 197–205. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quageo 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Yu, W.; Yang, J.; Sun, D.; Yu, H.; Yao, Y.; Xiao, X.; Xia, J. Spatial-Temporal Patterns of Network Structure of Human Settlements Competitiveness in Resource-Based Urban Agglomerations. Front. Environ. Sci. 2022, 10, 893876. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of Land Use Change on Ecosystem Service Value Based on SDGs Report—Taking Guangxi as an Example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, A.; Zhang, D. Evaluation of resources and environmental carrying capacity and its spatial-temporal dynamic evolution: A case study in Shandong Province, China. Sustain. Cities Soc. 2022, 82, 103916. [Google Scholar] [CrossRef]
- Sharifi, A. A critical review of selected smart city assessment tools and indicator sets. J. Clean. Prod. 2019, 233, 1269–1283. [Google Scholar] [CrossRef]
- Regamey, A.G.; Altwegg, J.; Sirén, E.A.; Strien, M.J.V.; Weibel, B. Integrating Ecosystem Services into Spatial Planning—A Spatial Decision Support Tool. Landsc. Urban Plan. 2017, 165, 206–219. [Google Scholar] [CrossRef]
- Zhao, Y.; He, G.; Bao, K.; Zhu, Y.; Yang, J. Assessment of spatial–temporal differences of industrial eco-efficiency in the huaihe river economic belt. Comput. Econ. 2021, 58, 615–639. [Google Scholar] [CrossRef]
- Sun, Z.; Yu, S.; Guo, H.; Wang, C.; Zhang, Z.; Xu, R. Assessing 40 years of spatial dynamics and patterns in megacities along the Belt and Road region using satellite imagery. Int. J. Digit. Earth 2020, 1, 71–87. [Google Scholar] [CrossRef]
- Bagheri, M.; Adam, R.; Jaafar, M.; Lonik, K.A.T. Using a hybrid Delphi hierarchical process, the development of a holistic index to measure city competitiveness in Malaysia: A case study from Penang Island. Model. Earth Syst. Environ. 2022, 9, 693–721. [Google Scholar] [CrossRef]
- Global Urban Monitoring Framework. Available online: https://data.unhabitat.org/pages/urban-monitoring-framework (accessed on 5 February 2023).
SDG 11 Indicators [1,27] | Temporal Interval | Data | Data Sources |
---|---|---|---|
11.1.1 Proportion of urban population living in slums, informal settlements, or inadequate housing | 2010–2020 | Number of subsistence allowances | Statistical data [17] |
11.2.1 The proportion of the population with convenient access to public transportation | 2010–2020 | Passenger volume | Statistical data [17] |
2018–2020 | Percentage of population using public transportation | Percentage of population [17] | |
11.3.1 Ratio of land consumption rate to population growth rate | 2010–2020 | Urban population and built-up area | Remote sensing data [28] |
11.5.1 Number of deaths, missing persons, and directly affected persons attributed to disasters per 100,000 population | 2010–2020 | Total population of the city and urban population affected by disasters | Statistical data [17] |
2010–2020 | Total urban population and the number of deaths and missing persons affected by disasters | Statistical data [17] | |
11.5.2 Direct economic loss in relation to global GDP, damage to critical infrastructure, and number of disruptions to basic services, attributed to disasters | 2010–2020 | GDP and economic losses caused by disasters | Statistical data [17] |
11.6.1 Proportion of municipal solid waste collected and managed in controlled facilities out of total municipal waste generated by cities | 2010–2020 | Domestic garbage clearance volume | Statistical data [17] |
11.6.2 Annual mean levels of fine particulate matter (e.g., PM2.5 and PM10) in cities (population weighted) | 2010–2020 | PM2.5 remote sensing data | Remote sensing data [29] |
11.7.1 Average share of the built-up area of cities that is open space for public use for all, by sex, age, and persons with disabilities | 2010–2020 | Per capita park green area | Remote sensing data [28] |
SDG 11 Indicators | Methodology |
---|---|
SDG 11.1.1 [31] | |
SDG 11.2.1 [32] | Percentage of population |
SDG 11.3.1 [33,34] | |
SDG 11.5.1 [35] | |
SDG 11.5.2 [36,37] | |
SDG 11.6.2 [36,37] | Remote sensing data used to calculate the local average PM2.5 concentration/statistics |
SDG 11.7.1 [38,39] |
Classification | County |
---|---|
LCRPGR > 4 | Ziyuan County |
1 ≤ LCRPGR ≤ 4 | Yangshuo County, Quanzhou County, Longsheng Autonomous County, Gongcheng Yao Autonomous County, Lipu City |
LCRPGR < 1 | Lingui County, Lingchuan County, Xing’an County, Yongfu County, Guanyang County, Pingle County, Urban Area |
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Moran’s I | −0.030 | −0.060 | −0.035 | −0.144 | −0.055 | 0.050 | −0.140 | 0.098 | −0.020 | 0.094 | 0.183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Ouyang, X.; Fei, X.; Sun, Z.; Li, S.; Jiang, H.; Li, H. Comprehensive Assessment of Sustainable Development Goal 11 at the Sub-City Scale: A Case Study of Guilin City. Remote Sens. 2023, 15, 4722. https://doi.org/10.3390/rs15194722
Chang Y, Ouyang X, Fei X, Sun Z, Li S, Jiang H, Li H. Comprehensive Assessment of Sustainable Development Goal 11 at the Sub-City Scale: A Case Study of Guilin City. Remote Sensing. 2023; 15(19):4722. https://doi.org/10.3390/rs15194722
Chicago/Turabian StyleChang, Yao, Xiaoying Ouyang, Xianyun Fei, Zhongchang Sun, Sijia Li, Huiping Jiang, and Hongwei Li. 2023. "Comprehensive Assessment of Sustainable Development Goal 11 at the Sub-City Scale: A Case Study of Guilin City" Remote Sensing 15, no. 19: 4722. https://doi.org/10.3390/rs15194722
APA StyleChang, Y., Ouyang, X., Fei, X., Sun, Z., Li, S., Jiang, H., & Li, H. (2023). Comprehensive Assessment of Sustainable Development Goal 11 at the Sub-City Scale: A Case Study of Guilin City. Remote Sensing, 15(19), 4722. https://doi.org/10.3390/rs15194722