Preface: Remote Sensing Applications in Ocean Observation
Author Contributions
Acknowledgments
Conflicts of Interest
References
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. Oceans 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Maturi, E.; Santoleri, R.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of sea surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Barton, I.J. Dual channel satellite measurements of sea surface temperature. Q. J. R. Meteorol. Soc. 1983, 109, 365–378. [Google Scholar] [CrossRef]
- Llewellyn-Jones, D.T.; Minnett, P.J.; Saunders, R.W.; Zavody, A.M. Satellite multichannel infrared measurements of sea surface temperature of the NE Atlantic Ocean using AVHRR/2. Q. J. R. Meteorol. Soc. 1984, 110, 613–631. [Google Scholar] [CrossRef]
- Walton, C.C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. J. Appl. Meteorol. Climatol. 1988, 27, 115–124. [Google Scholar] [CrossRef]
- Brown, O.B.; Minnett, P.J.; Evans, R.; Kearns, E.; Kilpatrick, K.; Kumar, A.; Sikorski, R.; Závody, A. MODIS Infrared Sea Surface Temperature Algorithm-Algorithm Theoretical Basis Document Version 2.0; University of Miami: Miami, FL, USA, 1999; Volume 31, 098-33. [Google Scholar]
- Castelao, R.M.; Mavor, T.P.; Barth, J.A.; Breaker, L.C. Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res. Oceans 2006, 111, C09026. [Google Scholar] [CrossRef] [Green Version]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K. Fronts in large marine ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Kahru, M.; Di Lorenzo, E.; Manzano-Sarabia, M.; Mitchell, B.G. Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California Current. J. Plankton Res. 2012, 34, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.; de Szoeke, S.P.; Xie, S.P.; O’neill, L.; Seo, H.; Song, Q.; Cornullon, P.; Spall, M.; Minobe, S. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Yan, X.-H.; Ho, C.-R.; Zheng, Q.; Klemas, V. Temperature and size variabilities of the Western Pacific Warm Pool. Science 1992, 258, 1643–1645. [Google Scholar] [CrossRef]
- Ho, C.-R.; Yan, X.-H.; Zheng, Q. Satellite observations of upper-layer variabilities in the western Pacific warm pool. Bull. Am. Meteorol. Soc. 1995, 76, 669–679. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Ho, C.-R.; Zheng, Q.; Kuo, N.-J.; Chang, P. Warm pool variability and heat flux change in the global oceans. Glob. Planet. Chang. 2011, 77, 26–33. [Google Scholar] [CrossRef]
- Bouali, M.; Sato, O.T.; Polito, P.S. Temporal trends in sea surface temperature gradients in the South Atlantic Ocean. Remote Sens. Environ. 2017, 194, 100–114. [Google Scholar] [CrossRef]
- Bouali, M.; Polito, P.S.; Sato, O.T.; Vazquez-Cuervo, J. On the use of NLSST and MCSST for the study of spatio-temporal trends in SST gradients. Remote Sens. Lett. 2019, 10, 1163–1171. [Google Scholar] [CrossRef]
- Thomas, L.; Ferrari, R. Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr. 2008, 38, 2501–2518. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R. A frontal challenge for climate models. Science 2011, 332, 316–317. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Oceans 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.W.; Feng, H. The empirical chlorophyll algorithm for MODIS: Testing the OC3M algorithm using NOMAD data. In Proceedings of the Ocean Color Bio-optical Algorithm Mini-workshop, Durham, NH, USA, 27–29 September 2005; pp. 27–29. [Google Scholar]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef]
- McClain, C.R. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Franz, B.A. Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 184–197. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-R.; Lee, L.-S.; Kuo, N.-J.; Li, H.-W.; Chen, C.-T. Intercomparison of spaceborne ocean color measurements between OCI and SeaWiFS. Geophys. Res. Lett. 2001, 28, 1255–1258. [Google Scholar] [CrossRef]
- Barbini, R.; Colao, F.; Fantoni, R.; Fiorani, L.; Okladnikov, I.G.; Palucci, A. Comparison of SeaWiFS, MODIS-Terra and MODIS-Aqua in the Southern Ocean. Int. J. Remote Sens. 2005, 26, 2471–2478. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.F. Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site. Geophys. Res. Lett. 2006, 33, L06617. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C. Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS. Remote Sens. Environ. 2016, 175, 120–129. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar]
- Keiner, L.E. Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sens. 1999, 20, 189–194. [Google Scholar] [CrossRef]
- Tanaka, A.; Kishino, M.; Doerffer, R.; Schiller, H.; Oishi, T.; Kubota, T. Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner. J. Oceanogr. 2004, 60, 519–530. [Google Scholar] [CrossRef]
- Su, F.-C.; Ho, C.-R.; Zheng, Q.; Kuo, N.-J.; Chen, C.-T. Satellite chlorophyll retrievals with a bipartite artificial neural network model. Int. J. Remote Sens. 2006, 27, 1563–1579. [Google Scholar] [CrossRef]
- Blix, K.; Eltoft, T. Machine learning automatic model selection algorithm for oceanic chlorophyll-a content retrieval. Remote Sens. 2018, 10, 775. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Guan, Q. A machine learning approach to estimate surface chlorophyll a concentrations in global oceans from satellite measurements. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4590–4607. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Ha, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Su, H.; Lu, X.; Chen, Z.; Zhang, H.; Lu, W.; Wu, W. Estimating coastal chlorophyll-a concentration from time-series OLCI data based on machine learning. Remote Sens. 2021, 13, 576. [Google Scholar] [CrossRef]
- Kolluru, S.; Tiwari, S.P. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning. Sci. Total Environ. 2022, 844, 157191. [Google Scholar] [CrossRef]
- Jin, D.; Lee, E.; Kwon, K.; Kim, T. A deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration. Remote Sens. 2021, 13, 2003. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.; Han, G.; Lin, X.; Liu, Y.; Jia, X.; Ji, Q.; Li, B. Applying deep learning in the prediction of chlorophyll-a in the East China Sea. Remote Sens. 2022, 14, 5461. [Google Scholar]
- Cheney, R.; Miller, L.; Agreen, R.; Doyle, N.; Lillibridge, J. TOPEX/POSEIDON: The 2-cm solution. J. Geophys. Res. Oceans 1994, 99, 24555–24563. [Google Scholar] [CrossRef]
- Nouël, F.; Berthias, J.P.; Deleuze, M.; Guitart, A.; Laudet, P.; Piuzzi, A.; Pradines, D.; Valorge, C.; Dejoie, C.L.; Susini, M.F.; et al. Precise Centre National d’Etudes Spatiales orbits for TOPEX/POSEIDON: Is reaching 2 cm still a challenge? J. Geophys. Res. Oceans 1994, 99, 24405–24419. [Google Scholar] [CrossRef]
- Fu, L.-L.; Cazenave, A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Academic Press: San Diego, CA, USA, 2001; pp. 1–463. [Google Scholar]
- Fu, L.-L.; Le Traon, P.Y. Satellite altimetry and ocean dynamics. Comptes Rendus Geosci. 2006, 338, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.-L.; Smith, R.D. Global ocean circulation from satellite altimetry and high-resolution computer simulation. Bull. Am. Meteorol. Soc. 1996, 77, 2625–2636. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.B. Observing large-scale temporal variability of ocean currents by satellite altimetry: With application to the Antarctic Circumpolar Current. J. Geophys. Res. Oceans 1985, 90, 4721–4740. [Google Scholar] [CrossRef]
- Ho, C.-R.; Zheng, Q.; Soong, Y.-S.; Kuo, N.-J.; Hu, J.-H. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res. Oceans 2000, 105, 13981–13990. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, L15606. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.B.; Le Traon, P.Y.; Morrow, R. Eddy dynamics from satellite altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-H.; Ho, C.-R.; Zheng, Q.; Qiu, B.; Hu, J.; Kuo, N.J. Statistical features of eddies approaching the Kuroshio east of Taiwan Island and Luzon Island. J. Oceanogr. 2017, 73, 427–438. [Google Scholar] [CrossRef]
- Schrama, E.J.O.; Ray, R.D. A Preliminary tidal analysis of TOPEX/POSEIDON altimetry. J. Geophys. Res. Oceans 1994, 99, 24799–24808. [Google Scholar] [CrossRef]
- Ray, R.D. A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99. 2; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 1999. [Google Scholar]
- Lefevre, J.-M.; Cotton, P.D. Ocean Surface Waves. In Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Fu, L.-L., Cazenave, A., Eds.; Academic Press: San Diego, CA, USA, 2001; Volume 69, pp. 305–328. [Google Scholar]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Cazenave, A.; Llovel, W. Contemporary Sea Level Rise. Ann. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [Green Version]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- Willis, J.K.; Chambers, D.P.; Kuo, C.Y.; Shum, C.K. Global Sea Level Rise: Recent progress and challenges for the decade to come. Oceanography 2010, 23, 26–35. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Frederikse, T.; Thompson, P.R.; Willis, J.K.; Nerem, R.S.; Fasullo, J.T. Past, present, and future Pacific sea-level change. Earth’s Future 2021, 9, e2020EF001839. [Google Scholar] [CrossRef]
- Freilich, M.H.; Chelton, D.B. Wavenumber spectra of Pacific winds measured by the Seasat scatterometer. J. Phys. Oceanogr. 1986, 16, 741–757. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.T. Progress in scatterometer application. J. Oceanogr. 2002, 58, 121–136. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, Y.; Dong, R. A universal fuzzy logic optical water type scheme for the global oceans. Remote Sens. 2021, 13, 4018. [Google Scholar] [CrossRef]
- Amri, E.; Dardouillet, P.; Benoit, A.; Courteille, H.; Bolon, P.; Dubucq, D.; Credoz, A. Offshore oil slick detection: From photo-interpreter to explainable multi-modal deep learning models using SAR images and contextual data. Remote Sens. 2022, 14, 3565. [Google Scholar] [CrossRef]
- Geng, X.; Shi, L.; Yang, J.; Li, P.; Zhao, L.; Sun, W.; Zhao, J. Ship detection and feature visualization analysis based on lightweight CNN in VH and VV polarization images. Remote Sens. 2021, 13, 1184. [Google Scholar] [CrossRef]
- Fei, T.; Huang, B.; Wang, X.; Zhu, J.; Chen, Y.; Wang, H.; Zhang, W. A Hybrid Deep Learning Model for the Bias Correction of SST Numerical Forecast Products Using Satellite Data. Remote Sens. 2022, 14, 1339. [Google Scholar] [CrossRef]
- Dong, L.; Qi, J.; Yin, B.; Zhi, H.; Li, D.; Yang, S.; Wang, W.; Cai, H.; Xie, B. Reconstruction of Subsurface Salinity Structure in the South China Sea Using Satellite Observations: A LightGBM-Based Deep Forest Method. Remote Sens. 2022, 14, 3494. [Google Scholar] [CrossRef]
- Schamberger, L.; Minghelli, A.; Chami, M.; Steinmetz, F. Improvement of Atmospheric Correction of Satellite Sentinel-3/OLCI Data for Oceanic Waters in Presence of Sargassum. Remote Sens. 2022, 14, 386. [Google Scholar] [CrossRef]
- He, M.; He, S.; Zhang, X.; Zhou, F.; Li, P. Assessment of normalized water-leaving radiance derived from GOCI using AERONET-OC data. Remote Sens. 2021, 13, 1640. [Google Scholar] [CrossRef]
- Lu, S.; He, M.; He, S.; He, S.; Pan, Y.; Yin, W.; Li, P. An improved cloud masking method for GOCI data over turbid coastal waters. Remote Sens. 2021, 13, 2722. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Li, Z.; Liu, B.; Yin, B.; Wu, S. Small angle scattering intensity measurement by an improved ocean scheimpflug lidar system. Remote Sens. 2021, 13, 2390. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Xie, L.; Zheng, Q.; Ling, Z.; Li, M. Response of total suspended sediment and chlorophyll-a concentration to late autumn typhoon events in the northwestern South China Sea. Remote Sens. 2021, 13, 2863. [Google Scholar] [CrossRef]
- Hussein, K.A.; Al Abdouli, K.; Ghebreyesus, D.T.; Petchprayoon, P.; Al Hosani, N.; Sharif, H.O. Spatiotemporal variability of chlorophyll-a and sea surface temperature, and their relationship with bathymetry over the coasts of UAE. Remote Sens. 2021, 13, 2447. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Zhou, Y.; Yue, S.; Zhang, X.; Gu, R.; Zhang, Y.; Qiao, Y.; Liu, M. Long-term changes in the unique and largest seagrass meadows in the Bohai Sea (China) using satellite (1974–2019) and sonar data: Implication for conservation and restoration. Remote Sens. 2021, 13, 856. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive marine heatwaves at the sea surface in the northwestern Pacific Ocean in summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Cheng, Y.; Gong, F. Long-term changes and factors that influence changes in thermal discharge from nuclear power plants in Daya Bay, China. Remote Sens. 2022, 14, 763. [Google Scholar] [CrossRef]
- Qiao, M.; Cao, A.; Song, J.; Pan, Y.; He, H. Enhanced turbulent mixing in the upper ocean induced by super Typhoon Goni (2015). Remote Sens. 2022, 14, 2300. [Google Scholar] [CrossRef]
- Li, Z.; Verhoef, A.; Stoffelen, A. Bayesian sea ice detection algorithm for CFOSAT. Remote Sens. 2022, 14, 3569. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, C.; Hu, J.; Shang, S. Unusual fish assemblages associated with environmental changes in the East China Sea in February and March 2017. Remote Sens. 2021, 13, 1768. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Wei, H.; Jiang, C.; Liu, C.; Zhao, L. On characteristics and mixing effects of internal solitary waves in the northern Yellow Sea as revealed by satellite and in situ observations. Remote Sens. 2022, 14, 3660. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, Z.; Feng, M.; Li, Q.; Zhang, P.; You, J.; Gao, S.; Yin, B. Satellite investigation of semidiurnal internal tides in the Sulu-Sulawesi Seas. Remote Sens. 2021, 13, 2530. [Google Scholar] [CrossRef]
- Wang, W.; Robertson, R.; Wang, Y.; Zhao, C.; Hao, Z.; Yin, B.; Xu, Z. Distinct variability between semidiurnal and diurnal internal tides at the East China Sea shelf. Remote Sens. 2022, 14, 2570. [Google Scholar] [CrossRef]
- Meunier, T.; Pérez-Brunius, P.; Bower, A. Reconstructing the three-dimensional structure of loop current rings from satellite altimetry and in situ data using the Gravest empirical modes method. Remote Sens. 2022, 14, 4174. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, Z.; Feng, M.; Li, Q.; Yin, B. Spatiotemporal variability of mesoscale eddies in the Indonesian Seas. Remote Sens. 2021, 13, 1017. [Google Scholar] [CrossRef]
- Ying, S.; Qu, H.; Tao, S.; Zheng, L.; Wu, X. Radiation sensitivity analysis of ocean wake information detection system based on visible light remote sensing. Remote Sens. 2022, 14, 4054. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, J.; Shi, W. Mapping the coastal upwelling east of Taiwan using geostationary satellite data. Remote Sens. 2021, 13, 170. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, Y.; Hu, J.; Aung, C.; Lin, X.; Dong, Y. Springtime upwelling and its formation mechanism in coastal waters of Manaung Island, Myanmar. Remote Sens. 2020, 12, 3777. [Google Scholar] [CrossRef]
- Xie, S.; Huang, Z.; Wang, X.H. Remotely sensed seasonal shoreward intrusion of the East Australian Current: Implications for coastal ocean dynamics. Remote Sens. 2021, 13, 854. [Google Scholar] [CrossRef]
- Chow, C.-H.; Lin, Y.-C.; Cheah, W.; Tai, J.-H. Injection of high chlorophyll-a waters by a branch of Kuroshio Current into the nutrient-poor north Pacific Subtropical Gyre. Remote Sens. 2022, 14, 1531. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, J.; Chen, Z.; Zhu, J.; Yang, L.; Chen, X.; Wu, X. A strong Kuroshio intrusion into the South China Sea and its accompanying cold-core anticyclonic eddy in winter 2020–2021. Remote Sens. 2021, 13, 2645. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Hsu, P.-C.; Zheng, Q.; Ho, C.-R. Variations in flow patterns in the northern Taiwan Strait observed by satellite-tracked drifters. Remote Sens. 2022, 14, 2154. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.; Miranda, G.V.; Mendonça, L.F.; Silva, M.A.; Cambuí, E.C.B.; Lopes, J.M.; Porsani, M.J. Oil spill detection and mapping: A 50-year bibliometric analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-R.; Liu, A.K. Preface: Remote Sensing Applications in Ocean Observation. Remote Sens. 2023, 15, 415. https://doi.org/10.3390/rs15020415
Ho C-R, Liu AK. Preface: Remote Sensing Applications in Ocean Observation. Remote Sensing. 2023; 15(2):415. https://doi.org/10.3390/rs15020415
Chicago/Turabian StyleHo, Chung-Ru, and Antony K. Liu. 2023. "Preface: Remote Sensing Applications in Ocean Observation" Remote Sensing 15, no. 2: 415. https://doi.org/10.3390/rs15020415
APA StyleHo, C. -R., & Liu, A. K. (2023). Preface: Remote Sensing Applications in Ocean Observation. Remote Sensing, 15(2), 415. https://doi.org/10.3390/rs15020415