Retrieval of Atmospheric Water Vapor Content in the Environment from AHI/H8 Using Both Physical and Random Forest Methods—A Case Study for Typhoon Maria (201808)
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Forecasts
2.1.2. AHI Level1B
2.1.3. ERA5
2.1.4. Dropsonde
2.2. Methods
2.2.1. Maria Typhoon
2.2.2. RF-Based Algorithm
2.2.3. 1DVAR
2.3. Evaluation Criteria
3. Evaluations of RF-Based Algorithm
4. Comparisons of Retrievals between RF-Based and 1DVAR Algorithms
5. Summary and Discussion
- The GFS forecasts and the AHI measurements are both necessary information for moisture retrievals and provide supplemental value for each other;
- The accuracy of atmospheric water vapor retrievals using the RF-based algorithm with representative training dataset is enhanced when compared with the 1DVAR algorithm (e.g., with 35–45% improvement in this case);
- The retrievals can be conducted at full resolution in operation with high computational efficiency if using a machine learning-based algorithm instead, potentially for real-time or near real-time quantitative applications of high spatio-temporal resolution satellite measurements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhan, R.; Wang, Y. Different Responses of Tropical Cyclone Tracks Over the Western North Pacific and North Atlantic to Two Distinct Sea Surface Temperature Warming Patterns. Geophys. Res. Lett. 2020, 47, e2019GL086923. [Google Scholar] [CrossRef]
- Liu, H.; Tang, W.; Zhao, L. Analysis of helicity and moisture during a rainstorm effected by 0808 typhoon. Sci. Meteorol. Sin. 2010, 30, 344–350. [Google Scholar]
- Chen, X.; Zhang, J.; Li, C.; Cao, L. Study on the low_frequency environmental influences on the rapid intensification of typhoon “Lekima”. J. Meteorol. Sci. 2020, 40, 114–122. [Google Scholar]
- Lyu, Q.; Zhang, Y.; Jiang, H.; Zheng, H.; Chen, D.; Hu, Y. Precipitation evolution during the rapid intensification event of typhoon “Lekima” (1909). J. Meteorol. Sci. 2020, 40, 136–142. [Google Scholar]
- Li, Y.; Zhang, Z.; Gao, G.; Cong, C.; Li, R. Impacts of typhoon circulation on the water vapor transportation of remote precipitation. J. Mar. Meteorol. 2017, 37, 111–117. [Google Scholar]
- Bueh, C.; Zhuge, A.; Xie, Z.; Gao, Z.; Lin, D. Water Vapor Transportation Features and Key Synoptic-scale Systems of the 7.20 Rainstorm in Henan Province in 2021. Chin. J. Atmos. Sci. 2022, 46, 725–744. [Google Scholar]
- Li, Y.; Chen, L.; Wang, J. The Diagnostic analusis on the characteristics of large scale circulationcorresponding to the sustaining and decaying of tropical cyclone after it’s landfall. Acta Meteorol. Sin. 2004, 62, 167–179. [Google Scholar]
- Dai, Z.; Wu, H.; Jiang, Y.; Xia, M.; Zhu, X.; Qing, T. Characteristics of water vapor transport in precipitation difference between two landing typhoons of “Jelawat” and “Haiku”. J. Meteorol. Environ. 2018, 34, 16–24. [Google Scholar]
- Chen, Z.; Chen, L.; Li, Y. Diagnostic analysis of large-scale circulation features associated with strong and weak landfalling typhoon precipitation events. Acta Meteorol. Sin. 2009, 67, 840–850. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Chen, H.; Mao, Z.; Chen, J. A comparative analysis of climatological characteristics of landing typhoons with and without atmospheric river in recent 30 years in China. Acta Meteorol. Sin. 2020, 78, 745–760. [Google Scholar]
- Fujiwara, M.; Polavarapu, S.; Jackson, D. A proposal of the SPARC Reanalysis/Analysis Intercomparison Project. SPARC Newsl. 2012, 38, 14–17. [Google Scholar]
- Fujiwara, M.; Wright, J.S.; Manney, G.L.; Gray, L.J.; Anstey, J.; Birner, T.; Davis, S.; Gerber, E.P.; Harvey, V.L.; Hegglin, M.I.; et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys. 2017, 17, 1417–1452. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9-Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Huang, Y.; Lu, Q.; Zheng, J. Inversion of water vapor total using FY-3A near-infrared data. J. Appl. Meteorol. 2011, 22, 46–56. [Google Scholar]
- Schmit, T.J.; Li, J.; Lee, S.J.; Li, Z.; Dworak, R.; Lee, Y.-K.; Bowlan, M.; Gerth, J.; Martin, G.D.; Straka, W.; et al. Legacy Atmospheric Profiles and Derived Products From GOES-16: Validation and Applications. Earth Space Sci. 2019, 6, 1730–1748. [Google Scholar] [CrossRef]
- Yin, R.; Han, W.; Gao, Z.; Li, J. Impact of High Temporal Resolution FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Radiance Measurements on Typhoon Forecasts: Maria (2018) Case with GRAPES Global 4D-Var Assimilation System. Geophys. Res. Lett. 2021, 48, e2021GL093672. [Google Scholar] [CrossRef]
- Schmit, T.J.; Goodman, S.J.; Lindsey, D.T.; Rabin, R.M.; Bedka, K.M.; Gunshor, M.M.; Cintineo, J.L.; Velden, C.S.; Bachmeier, A.S.; Lindstrom, S.S.; et al. Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens. 2013, 7, 073462. [Google Scholar] [CrossRef]
- Schmit, T.J.; Goodman, S.J.; Gunshor, M.M.; Sieglaff, J.; Heidinger, A.K.; Bachmeier, A.S.; Lindstrom, S.S.; Terborg, A.; Feltz, J.; Bah, K.; et al. Rapid Refresh Information of Significant Events: Preparing Users for the Next Generation of Geostationary Operational Satellites. Bull. Am. Meteorol. Soc. 2015, 96, 561–576. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-K.; Li, J.; Li, Z.; Schmit, T. Atmospheric temporal variations in the pre-landfall environment of typhoon Nangka (2015) observed by the Himawari-8 AHI. Asia-Pac. J. Atmos. Sci. 2017, 53, 431–443. [Google Scholar] [CrossRef]
- Di, D.; Li, J.; Li, Z.; Li, J.; Schmit, T.J.; Menzel, W.P. Can Current Hyperspectral Infrared Sounders Capture the Small Scale Atmospheric Water Vapor Spatial Variations? Geophys. Res. Lett. 2021, 48, e2021GL095825. [Google Scholar] [CrossRef]
- Xue, Y.; Li, J.; Li, Z.; Lu, R.; Gunshor, M.M.; Moeller, S.L.; Di, D.; Schmit, T.J. Assessment of Upper Tropospheric Water Vapor Monthly Variation in Reanalyses with Near-Global Homogenized 6.5-mu m Radiances from Geostationary Satellites. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032695. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Li, Z.; Xue, Y.; Di, D.; Wang, P.; Li, J. Evaluation of Environmental Moisture from NWP Models with Measurements from Advanced Geostationary Satellite Imager-A Case Study. Remote Sens. 2020, 12, 670. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Li, J.; Gurka, J.J.; Goldberg, M.D.; Schrab, K.J.; Li, J.; Feltz, W.F. The GOES-R Advanced Baseline Imager and the Continuation of Current Sounder Products. J. Appl. Meteorol. Climatol. 2008, 47, 2696–2711. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Li, Z.; Li, J.; Schmit, T.J. Evaluation of the GOES-R ABI LAP Retrieval Algorithm Using the GOES-13 Sounder. J. Atmos. Ocean. Technol. 2014, 31, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wu, C.; Li, J. Retrieval of Atmospheric Temperature and Moisture Vertical Profiles from Satellite Advanced Infrared Sounder Radiances with a New Regularization Parameter Selecting Method. J. Meteorol. Res. 2016, 30, 356–370. [Google Scholar] [CrossRef]
- Lee, Y.; Han, D.; Ahn, M.-H.; Im, J.; Lee, S.J. Retrieval of Total Precipitable Water from Himawari-8 AHI Data: A Comparison of Random Forest, Extreme Gradient Boosting, and Deep Neural Network. Remote Sens. 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Liang, W.L.; Huang, R. Comparative analysis of wind profile radar products and ERA5 reanalysis data. J. Meteorol. Res. Appl. 2021, 42, 83–88. [Google Scholar]
- Murata, H.; Takahashi, M.; Kosaka, Y. VIS and IR bands of Himawari-8/AHI compatible with those of MTSAT-2/Imager. MSC Tech. Note 2015, 60, 1–18. [Google Scholar]
- Li, J.; Schmidt, C.C.; Nelson, J.P. Estimation of Total Atmospheric Ozone from GOES Sounder Radiances with High Temporal Resolution. J. Atmos. Ocean. Technol. 2001, 18, 157–168. [Google Scholar] [CrossRef]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the Science Product Algorithm Testbed for Chinese Next-Generation Geostationary Meteorological Satellites: Fengyun-4 Series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS. Ieee Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Min, M.; Li, J.; Wang, F.; Liu, Z.; Menzel, W.P. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239, 111616. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Li, Z.; Zheng, J.; Wu, D.; Zhao, H. FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System. Atmosphere 2022, 13, 290. [Google Scholar] [CrossRef]
- Davis, S.M.; Hegglin, M.I.; Fujiwara, M.; Dragani, R.; Harada, Y.; Kobayashi, C.; Long, C.; Manney, G.L.; Nash, E.R.; Potter, G.L.; et al. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys. 2017, 17, 12743–12778. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-Y.; Chiu, C.-H.; Lin, P.-H.; Min, M. Comparison of Cloud-Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and Radiosonde. J. Geophys. Res. Atmos. 2020, 125, e2020JD032683. [Google Scholar] [CrossRef]
- Heng, J.; Yang, S.; Gong, Y.; Gu, J.; Liu, H. Characteristics of the convective bursts and their relationship with the rapid intensification of Super Typhoon Maria (2018). Atmos. Ocean. Sci. Lett. 2020, 13, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Turini, N.; Thies, B.; Bendix, J. Estimating High Spatio-Temporal Resolution Rainfall from MSG1 and GPM IMERG Based on Machine Learning: Case Study of Iran. Remote Sens. 2019, 11, 2307. [Google Scholar] [CrossRef] [Green Version]
- Kuehnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests. J. Appl. Meteorol. Climatol. 2014, 53, 2457–2480. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, B. Remote sensing retrieval of total precipitable water under clear-sky atmosphere from FY-4A AGRI data by combining physical mechanism and random forest algorithm. J. Remote Sens. 2021, 25, 1836–1847. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Menzel, W.P.; Schmit, T.J.; Nelson, J.P., III; Daniels, J.; Ackerman, S.A. GOES sounding improvement and applications to severe storm nowcasting. Geophys. Res. Lett. 2008, 35. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000253063600007 (accessed on 18 December 2022).
- Li, J.; Schmit, T.J.; Jin, X.; Martin, G. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Legacy Atmospheric Moisture Profile, Legacy Atmospheric Temperature Profile, Total Precipitable Water, and Derived At-Mospheric Stability Indices; NOAA Nesdis Center for Satellite Applications and Research, 2010; Volume 106. Available online: http://www.goes-r.gov/products/ATBDs/baseline/Sounding_LAP_v2.0_no_color.pdf (accessed on 18 December 2022).
- Hannon, S.; Strow, L.L.; McMillan, W.W. Atmospheric infrared fast transmittance models: A comparison of two approaches. In Proceedings of the SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 31 October 1996. [Google Scholar]
- Rodgers, C.D. Rereieval of atmospheric-temperature and composition from remote measurements of thermal-randiation. Rev. Geophys. 1976, 14, 609–624. [Google Scholar] [CrossRef]
- Li, J.; Nelson III, J.P.; Schmidt, C.C.; Schmit, T.J.; Menzel, W.P.; Seemann, S.; Eva, B. An approach to improvement temperature and moisture retrievals from the GOES Sounder measurements. In Proceedings of the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, USA, 19 September 2004. [Google Scholar]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.J.; Huang, H.L.; Achtor, T.H. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Li, J.; Paul Menzel, W.; Schmit, T.J.; Schmetz, J. Applications of geostationary hyperspectral infrared sounder observations—Progress, challenges, and future perspectives. Bull. Am. Meteorol. Soc. 2022, 103, E2733–E2755. [Google Scholar] [CrossRef]
Band Number | Central Wavelength (μm) | Resolution at Nadir (km) |
---|---|---|
8 | 6.2 | 2.0 |
9 | 6.9 | |
10 | 7.3 | |
11 | 8.6 | |
12 | 9.6 | |
13 | 10.4 | |
14 | 11.2 | |
15 | 12.3 | |
16 | 13.3 |
Variables | Information Provided by These Variables | ||
---|---|---|---|
Input | GFS | PRMSL_meansealevel (hPa) | Minimum sea level pressure |
TMP_surface (K) | Sea surface temperature | ||
VM (1000 hPa/900 hPa/850 hPa/ 800 hPa/700 hPa/500 hPa/300 hPa) (g/kg) | Water vapor specific humidity at specific atmospheric pressure levels | ||
LPW (UP/MID/LOW) TPW (mm) | Layered precipitable water Total precipitable water | ||
AHI | IRX0620 (K) | Brightness temperature of the AHI band 08 which provides upper tropospheric moisture information | |
IRX0700 (K) | Brightness temperature of the AHI band 09 which provides middle to upper tropospheric moisture information | ||
IRX0730 (K) | Brightness temperature of the AHI band 10 which provides low to middle tropospheric moisture information | ||
IRX0860 (K) | Brightness temperature of the AHI band 11 | ||
IRX0960 (K) | Brightness temperature of AHI band 12 | ||
IRX1040 (K) | Brightness temperature of the AHI band 13 which provides SST information | ||
IRX1120 (K) | Brightness temperature of the AHI band 14 which provides SST information | ||
IRX1230 (K) | Brightness temperature of the AHI band 15 which provides boundary layer moisture information | ||
IRX1330 (K) | Brightness temperature of the AHI band 16 which provides low level atmospheric temperature information | ||
IRX0620-IRX1120 (K) | Brightness temperature difference | ||
IRX0700-IRX1120 (K) | |||
IRX0730-IRX1120 (K) | |||
IRX1230-IRX1120 (K) | |||
Output | ERA5 | MSL (hPa) | Minimum sea level pressure |
SST (K) | Sea surface temperature | ||
VM (1000 hPa/900 hPa/850 hPa/ 800 hPa/700 hPa/500 hPa/300 hPa) (g/kg) | Atmospheric water vapor mixing ratio at specific pressure levels | ||
LPW(UP/MID/LOW) (mm) TPW (mm) | Layered precipitable water Total precipitable water |
Super-Parameter | Definition | Number |
---|---|---|
1. n_estimators | the number of trees | 300 |
2. max_features | the maximum number of predictors | “auto” |
3. max_depth | the maximum depth of the tree | 30 |
Evaluation Indicators | Calculation Formulas | Range of Values | Optimum Value |
---|---|---|---|
RMSE | 0 | ||
R | [–1, 1] | ||
MAPE | 0 | ||
MAE | 0 |
RMSE | MAPE | MAE | R | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GFS | GFS+ AHI | Improvement (%) | GFS | GFS+ AHI | Improvement (%) | GFS | GFS+ AHI | Improvement (%) | GFS | GFS+ AHI | Improvement (%) | |
MSL | 4.32 | 0.95 | 78.01 | 0.29 | 0.06 | 79.31 | 2.89 | 0.65 | 77.51 | 0.79 | 0.98 | 24.05 |
SST | 1.21 | 0.45 | 62.81 | 0.27 | 0.10 | 62.96 | 0.81 | 0.29 | 64.20 | 0.98 | 0.99 | 1.02 |
VM _1000 hPa | 1.58 | 0.57 | 63.92 | 7.87 | 2.63 | 66.58 | 1.14 | 0.39 | 65.79 | 0.87 | 0.98 | 12.64 |
VM _900 hPa | 2.63 | 1.03 | 60.84 | 19.37 | 7.44 | 61.59 | 1.92 | 0.73 | 61.98 | 0.59 | 0.93 | 57.63 |
VM _850 hPa | 2.82 | 1.02 | 63.83 | 25.25 | 9.01 | 64.32 | 2.11 | 0.72 | 65.88 | 0.53 | 0.93 | 75.47 |
VM _800 hPa | 2.78 | 1.08 | 61.15 | 28.97 | 11.30 | 60.99 | 2.20 | 0.78 | 64.55 | 0.51 | 0.91 | 78.43 |
VM _700 hPa | 2.50 | 1.08 | 56.80 | 40.62 | 18.24 | 55.10 | 1.98 | 0.79 | 60.10 | 0.45 | 0.89 | 97.78 |
VM _500 hPa | 1.58 | 0.70 | 55.70 | 69.83 | 33.30 | 52.32 | 1.24 | 0.52 | 58.06 | 0.40 | 0.89 | 122.5 |
VM _300 hPa | 0.33 | 0.14 | 57.58 | 111.46 | 46.40 | 58.37 | 0.26 | 0.10 | 61.54 | 0.26 | 0.94 | 261.54 |
TPW | 10.10 | 3.76 | 62.77 | 19.47 | 6.66 | 65.79 | 7.99 | 2.64 | 66.96 | 0.64 | 0.94 | 46.88 |
LPW_LOW | 1.76 | 0.66 | 62.50 | 9.68 | 3.45 | 64.36 | 1.25 | 0.45 | 64.00 | 0.82 | 0.97 | 18.29 |
LPW_MID | 4.96 | 1.89 | 61.90 | 24.35 | 8.97 | 63.16 | 3.86 | 1.35 | 65.03 | 0.56 | 0.93 | 66.07 |
LPW_UP | 5.14 | 2.07 | 59.73 | 41.11 | 16.54 | 59.77 | 4.07 | 1.49 | 63.39 | 0.48 | 0.91 | 89.58 |
RMSE (Unit: mm) | MAPE (Unit: %) | MAE (Unit: mm) | R | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1DVAR | RF | Improvement (%) | 1DVAR | RF | Improvement (%) | 1DVAR | RF | Improvement (%) | 1DVAR | RF | Improvement (%) | |
Clear (0–10%) | 1.17 | 0.70 | 40.17 | 6.24 | 3.44 | 44.87 | 0.92 | 0.49 | 46.74 | 0.71 | 0.86 | 17.44 |
Partly Cloudy (10–30%) | 1.00 | 061 | 39.00 | 5.33 | 2.92 | 45.22 | 0.81 | 0.42 | 48.45 | 0.82 | 0.88 | 9.00 |
Cloudy (30–70%) | 1.23 | 0.73 | 40.65 | 6.64 | 3.81 | 42.62 | 0.97 | 0.55 | 43.30 | 0.77 | 0.86 | 10.46 |
Overcast (70–100%) | 1.11 | 0.71 | 36.04 | 6.18 | 3.53 | 42.88 | 0.90 | 0.50 | 44.44 | 0.72 | 0.85 | 15.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Zhou, R.; Di, D.; Bai, W.; Liu, Z. Retrieval of Atmospheric Water Vapor Content in the Environment from AHI/H8 Using Both Physical and Random Forest Methods—A Case Study for Typhoon Maria (201808). Remote Sens. 2023, 15, 498. https://doi.org/10.3390/rs15020498
Zhu L, Zhou R, Di D, Bai W, Liu Z. Retrieval of Atmospheric Water Vapor Content in the Environment from AHI/H8 Using Both Physical and Random Forest Methods—A Case Study for Typhoon Maria (201808). Remote Sensing. 2023; 15(2):498. https://doi.org/10.3390/rs15020498
Chicago/Turabian StyleZhu, Linyan, Ronglian Zhou, Di Di, Wenguang Bai, and Zijing Liu. 2023. "Retrieval of Atmospheric Water Vapor Content in the Environment from AHI/H8 Using Both Physical and Random Forest Methods—A Case Study for Typhoon Maria (201808)" Remote Sensing 15, no. 2: 498. https://doi.org/10.3390/rs15020498
APA StyleZhu, L., Zhou, R., Di, D., Bai, W., & Liu, Z. (2023). Retrieval of Atmospheric Water Vapor Content in the Environment from AHI/H8 Using Both Physical and Random Forest Methods—A Case Study for Typhoon Maria (201808). Remote Sensing, 15(2), 498. https://doi.org/10.3390/rs15020498