Remotely Sensing the Invisible—Thermal and Magnetic Survey Data Integration for Landscape Archaeology
Abstract
:1. Introduction
2. Materials and Methods
2.1. LiDAR and Optical Remote Sensing
2.2. Airborne Magnetometry
2.3. Airborne Thermography
2.4. Methods Integration Pipeline
3. Results
3.1. LiDAR and Orthophoto
3.2. Airborne Magnetometry
3.3. Airborne Thermography
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renfrew, C. Monuments, Mobilization and Social Organization in Neolithic Wessex. In Man, Settlement and Urbanism; Ucko, P., Tringham, R., Dimbleby, R., Eds.; Duckworth: London, UK, 1973. [Google Scholar]
- Abrams, E.M.; Bolland, T.W. Architectural Energetics, Ancient Monuments, and Operations Management. J. Archaeol. Method Theory 1999, 6, 263–291. [Google Scholar] [CrossRef]
- Wright, J. The Honest Labour of Stone Mounds: Monuments of Bronze and Iron Age Mongolia as Costly Signals. World Archaeol. 2017, 49, 547–567. [Google Scholar] [CrossRef]
- Wright, J. Prehistoric Mongolian Archaeology in the Early 21st Century: Developments in the Steppe and Beyond. J. Archaeol. Res. 2021, 29, 431–479. [Google Scholar] [CrossRef]
- Caspari, G. Quantifying Ritual Funerary Activity of the Late Prehistoric Southern Kanas Region. Asian Perspect. 2020, 59, 421–452. [Google Scholar] [CrossRef]
- Chugunov, K. The Discontinuity of Construction of the “Royal” Memorials of Tuva and the Chronology of the Early Scythian Time. In Terra Scythica; Institute of Archaeology and Ethnography: Novosibirsk, Russia, 2011; pp. 358–369. [Google Scholar]
- Chugunov, K.V. “Royal” Burial-Commemorative Complexes of Tuva: Some Results and Research Prospects. In The Eurasian Steppe Cultures and Their Interaction with Ancient Civilizations; St. Petersburg, Russia, 2012. [Google Scholar]
- Caspari, G.; Sadykov, T.; Blochin, J.; Hajdas, I. Tunnug 1 (Arzhan 0)—An Early Scythian Kurgan in Tuva Republic, Russia. Archaeol. Res. Asia 2018, 15, 82–87. [Google Scholar] [CrossRef]
- Caspari, G.; Sadykov, T.; Blochin, J.; Bollinger, M.; Szidat, S. New Evidence for a Bronze Age Date of Chariot Depictions in the Eurasian Steppe. Rock Art Res. 2020, 37, 53–58. [Google Scholar]
- Sadykov, T.; Caspari, G.; Blochin, J. Kurgan Tunnug 1—New Data on the Earliest Horizon of Scythian Material Culture. J. Field Archaeol. 2020, 45, 556–570. [Google Scholar] [CrossRef]
- Sadykov, T.; Caspari, G.; Blochin, J.; Lösch, S.; Kapinus, Y.; Milella, M. The Kokel of Southern Siberia: New Data on a Post-Xiongnu Material Culture. PLoS ONE 2021, 16, e0254545. [Google Scholar] [CrossRef]
- Chan, A.; Sadykov, T.; Blochin, J.; Hajdas, I.; Caspari, G. The Polymorphism and Tradition of Funerary Practices of Medieval Turks in Light of New Findings from Tuva Republic. PLoS ONE 2022, 17, e0274537. [Google Scholar] [CrossRef]
- Caspari, G. Mapping and Damage Assessment of “Royal” Burial Mounds in the Siberian Valley of the Kings. Remote Sens. 2020, 12, 773. [Google Scholar] [CrossRef]
- Caspari, G.; Sadykov, T.; Blochin, J.; Buess, M.; Nieberle, M.; Balz, T. Integrating Remote Sensing and Geophysics for Exploring Early Nomadic Funerary Architecture in the “Siberian Valley of the Kings”. Sensors 2019, 19, 3074. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J. Archaeological Landscapes of the Near East; University of Arizona Press: Tucson, AZ, USA, 2003. [Google Scholar]
- Kvamme, K.L. Integrating Multidimensional Geophysical Data. Archaeol. Prospect. 2006, 13, 57–72. [Google Scholar] [CrossRef]
- Green, A.S.; Orengo, H.A.; Alam, A.; Garcia-Molsosa, A.; Green, L.M.; Conesa, F.; Ranjan, A.; Singh, R.N.; Petrie, C.A. Re-Discovering Ancient Landscapes: Archaeological Survey of Mound Features from Historical Maps in Northwest India and Implications for Investigating the Large-Scale Distribution of Cultural Heritage Sites in South Asia. Remote Sens. 2019, 11, 2089. [Google Scholar] [CrossRef]
- Laugier, E.J.; Casana, J. Integrating Satellite, UAV, and Ground-Based Remote Sensing in Archaeology: An Exploration of Pre-Modern Land Use in Northeastern Iraq. Remote Sens. 2021, 13, 5119. [Google Scholar] [CrossRef]
- Garcia-Molsosa, A.; Orengo, H.A.; Petrie, C.A. Reconstructing Long-Term Settlement Histories on Complex Alluvial Floodplains by Integrating Historical Map Analysis and Remote-Sensing: An Archaeological Analysis of the Landscape of the Indus River Basin. Herit. Sci. 2023, 11, 141. [Google Scholar] [CrossRef]
- Gorka, T.; Fassbinder, J.W. Classification and Documentation of Kurgans by Magnetometry. In Proceedings of the Archaeological Prospection, Extended Abstracts, 9th International Conference on Archaeological Prospection, Izmir, Turkey, 19–24 September 2011; pp. 183–186. [Google Scholar]
- Fassbinder, J.; Gorka, T.; Chemyakina, M.; Molodin, V.; Parzinger, H.; Nagler, A. Prospecting of Kurgans by Magnetometry: Case Studies from Kazakhstan, Siberia and the Northern Caucasus; The State Heremitage Publishers: St. Petersburg, Russia, 2013; pp. 50–57. [Google Scholar]
- Oleszczak, Ł.; Przybyła, M.M.; Pieńkos, I.; Chugunov, K.V.; Zhogova, N.A. The Magnetic Survey of the Early Scythian Burial Site and Settlements in the Turan-Uyuk Valley in Tuva. Acta Archaeol. Carpathica 2020, 55, 343–368. [Google Scholar] [CrossRef]
- Ardelean, A.C.; Sărășan, A.; Bălărie, A.; Akmatov, K.; Tabaldiev, K.; Wehrheim, R. Above Ground and Underground—An Integrated Approach of the Burial Mounds within the Suusamyr Plateau, Kyrgyzstan. Archaeol. Res. Asia 2023, 35, 100463. [Google Scholar] [CrossRef]
- Epov, M.I.; Molodin, V.I.; Manshtein, A.K.; Balkov, E.V.; Dyad’kov, P.G.; Matasova, G.G.; Kazansky, A.Y.; Bortnikova, S.B.; Pozdnyakova, O.A.; Karin, Y.G.; et al. Integrated Archeological and Geophysical Studies in West Siberia. Russ. Geol. Geophys. 2016, 57, 473–482. [Google Scholar] [CrossRef]
- Epov, M.I.; Chemyakina, M.A. Geophysical Methods in the Research of Archaeological Sites in Western Siberia and Altai: Results and Perspectives. ArchéoSciences 2009, 33, 271–274. [Google Scholar] [CrossRef]
- Becker, H.; Fassbinder, J.W. Magnetometry of a Scythian Settlement in Siberia near Cicah in the Baraba Steppe 1999. ICOMOS–Hefte Dtsch. Natl. 1999, 33, 168–172. [Google Scholar]
- Brosseder, U.; Pohl, E.; Tseveendorzh, D.; Munkhbayar, L.; Osinska, A.; Linzen, S. The Innovation of Iron and the Xiongnu—A Case Study from Central Mongolia. Asian Archaeol. 2023, 7, 29–61. [Google Scholar] [CrossRef]
- Stele, A.; Linck, R.; Schikorra, M.; Fassbinder, J.W.E. UAV Magnetometer Survey in Low-Level Flight for Archaeology: Case Study of a Second World War Airfield at Ganacker (Lower Bavaria, Germany). Archaeol. Prospect. 2022, 29, 645–650. [Google Scholar] [CrossRef]
- Schmidt, V.; Becken, M.; Schmalzl, J. A UAV-Borne Magnetic Survey for Archaeological Prospection of a Celtic Burial Site. First Break 2020, 38, 61–66. [Google Scholar] [CrossRef]
- Cool, A.C. Aerial Thermography in Archaeological Prospection: Applications & Processing. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2015. [Google Scholar]
- Lundén, B. Aerial Thermography—A Remote Sensing Technique Applied to Detection of Buried Archaeological Remains at a Site in Dalecarlia, Sweden. Geogr. Ann. Ser. Phys. Geogr. 1985, 67, 161–166. [Google Scholar]
- Carlomagno, G.M.; Maio, R.D.; Fedi, M.; Meola, C. Integration of Infrared Thermography and High-Frequency Electromagnetic Methods in Archaeological Surveys. J. Geophys. Eng. 2011, 8, S93. [Google Scholar] [CrossRef]
- Casana, J.; Kantner, J.; Wiewel, A.; Cothren, J. Archaeological Aerial Thermography: A Case Study at the Chaco-Era Blue J Community, New Mexico. J. Archaeol. Sci. 2014, 45, 207–219. [Google Scholar] [CrossRef]
- Walker, S. Low-Altitude Aerial Thermography for the Archaeological Investigation of Arctic Landscapes. J. Archaeol. Sci. 2020, 117, 105126. [Google Scholar] [CrossRef]
- Waagen, J.; Sánchez, J.G.; Van Der Heiden, M.; Kuiters, A.; Lulof, P. In the Heat of the Night: Comparative Assessment of Drone Thermography at the Archaeological Sites of Acquarossa, Italy, and Siegerswoude, The Netherlands. Drones 2022, 6, 165. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Línková, L. A New Method for UAV Lidar Precision Testing Used for the Evaluation of an Affordable DJI ZENMUSE L1 Scanner. Remote Sens. 2021, 13, 4811. [Google Scholar] [CrossRef]
- Diara, F.; Roggero, M. Quality Assessment of DJI Zenmuse L1 and P1 LiDAR and Photogrammetric Systems: Metric and Statistics Analysis with the Integration of Trimble SX10 Data. Geomatics 2022, 2, 254–281. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Fassbinder, J.W.E. Magnetometry for Archaeology. In Encyclopedia of Geoarchaeology; Gilbert, A.S., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2023; pp. 499–514. ISBN 978-94-007-4827-9. [Google Scholar]
- Balkov, E.; Karin, Y.; Pozdnyakova, O.; Dyadkov, P.; Goglev, D. The Aul-Koshkul-1 Cemetery in the Baraba Forest-Steppe: Findings of a Multidisciplinary Study. Archaeol. Ethnol. Anthropol. Eurasia 2022, 50, 138–146. [Google Scholar]
- Balkov, E.V.; Karin, Y.G.; Pozdnyakova, O.A.; Dyadkov, P.G. Modern Unmanned Technology in Archaeogeophysical Studies. Eng. Min. Geophys. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Pozdnyakova, O.A.; Balkov, E.V.; Dyadkov, P.G.; Marchenko, Z.V.; Grishin, A.E.; Evmenov, N.D. Integrative Geophysical Studies at the Novaya Kurya-1 Cemetery in the Kulunda Steppe. Archaeol. Ethnol. Anthropol. Eurasia 2022, 49, 69–79. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Xing, K.; Zhang, X. Unmanned Aerial Vehicles for Magnetic Surveys: A Review on Platform Selection and Interference Suppression. Drones 2021, 5, 93. [Google Scholar] [CrossRef]
- Walter, C.A.; Braun, A.; Fotopoulos, G. Impact of Three-Dimensional Attitude Variations of an Unmanned Aerial Vehicle Magnetometry System on Magnetic Data Quality: Impact of Attitude Variations on Magnetic Data. Geophys. Prospect. 2019, 67, 465–479. [Google Scholar] [CrossRef]
- Geosoft Oasis Montaj. Data Processing and Analysis Systems for Earth Science Applications, Version 8.3.3; Geosoft Inc.: Toronto, ON, Canada, 2015. [Google Scholar]
- Mohamed, A.; Ella, E.M.A.E. Magnetic Applications to Subsurface and Groundwater Investigations: A Case Study from Wadi El Assiuti, Egypt. Int. J. Geosci. 2021, 12, 77–101. [Google Scholar] [CrossRef]
- Casana, J.; Wiewel, A.; Cool, A.; Hill, A.C.; Fisher, K.D.; Laugier, E.J. Archaeological Aerial Thermography in Theory and Practice. Adv. Archaeol. Pract. 2017, 5, 310–327. [Google Scholar] [CrossRef]
- Bronnikova, M.A.; Chugunov, K.V.; Sadykov, T.R.; Panin, A.V. Reconstruction of the environment of Turan-Uyuk depression in the Scythian time according to paleosoils research of Chinge-Tey-I and Tunnug-1 burial-memorial complexes. In Eurasia from the Eneolithic (Chalcolithic) Era to the Early Middle Ages (Innovations, Contacts, Transmission of Ideas and Technologies); Institute for the History of Material Culture RAS: St. Petersburg, Russia, 2022; pp. 220–223. [Google Scholar]
- Stele, A.; Kaub, L.; Linck, R.; Schikorra, M.; Fassbinder, J.W. Drone-based magnetometer prospection for archaeology. J. Archaeol. Sci. 2023, 158, 105818. [Google Scholar] [CrossRef]
Flight time: | up to 40–45 min (with magnetometric equipment) |
Max. route length: | 22 km (per flight) |
Wind resistance: | 12 m/s |
Cruise speed: | up to 50 km/h |
Dimensions: | While folded: 70 × 25 × 20 cm |
Ready-to-flight: 150 × 150 × 43 cm | |
Min. safe flight altitude: | above 25 m |
Max. flight altitude: | 500 m |
Operating temperatures: | from −20 to +40 °C |
(optional expansion up to −40 °C is possible) | |
Motors: | 4, electric, brushless |
Take-off: | vertically, automatically, from platform 5 × 5 |
Sensitivity | 1 pT/√HZ |
Measurement range | 20,000 nTl–100,000 nTl |
General deviation error | <0.3 nTl |
Measurement frequency | 1000 Hz |
Feedback loop bandwidth | 30 Hz |
Sensor angle range | ±45° |
Operating temperature range | from −20 to +40 °C |
Sensor | Uncooled VOx Microbolometer |
Lens | DFOV: 40.6° |
Focal length: 13.5 mm (equivalent: 58 mm) | |
Aperture: f/1.0 | |
Focus: 5 m to ∞ | |
Digital Zoom | 1×, 2×, 4×, 8× |
Video Resolution | 640 × 512 @ 30 Hz |
Video Format | MP4 |
Image Resolution | 640 × 512 |
Image Format | R-JPEG (16 bit) |
Pixel Pitch | 12 μm |
Spectral Band | 8–14 μm |
Sensitivity (NETD) | ≤50 mK @ f/1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blochin, J.K.; Pavlovskaia, E.A.; Sadykov, T.R.; Caspari, G. Remotely Sensing the Invisible—Thermal and Magnetic Survey Data Integration for Landscape Archaeology. Remote Sens. 2023, 15, 4992. https://doi.org/10.3390/rs15204992
Blochin JK, Pavlovskaia EA, Sadykov TR, Caspari G. Remotely Sensing the Invisible—Thermal and Magnetic Survey Data Integration for Landscape Archaeology. Remote Sensing. 2023; 15(20):4992. https://doi.org/10.3390/rs15204992
Chicago/Turabian StyleBlochin, Jegor K., Elena A. Pavlovskaia, Timur R. Sadykov, and Gino Caspari. 2023. "Remotely Sensing the Invisible—Thermal and Magnetic Survey Data Integration for Landscape Archaeology" Remote Sensing 15, no. 20: 4992. https://doi.org/10.3390/rs15204992
APA StyleBlochin, J. K., Pavlovskaia, E. A., Sadykov, T. R., & Caspari, G. (2023). Remotely Sensing the Invisible—Thermal and Magnetic Survey Data Integration for Landscape Archaeology. Remote Sensing, 15(20), 4992. https://doi.org/10.3390/rs15204992