Vegetation Trend Detection Using Time Series Satellite Data as Ecosystem Condition Indicators for Analysis in the Northwestern Highlands of Ethiopia
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data
2.3. Seasonal Change Detection
2.4. Interannual Trend Changes
3. Results
3.1. Seasonal Changes
3.2. Interannual Changes
4. Discussion
4.1. Seasonal Changes
4.1.1. Seasonal Parameter Value Distribution for Vegetation Types
4.1.2. Correlation between Seasons and Seasonality Parameters
4.2. Interannual Changes Analysis
4.3. Implications for the Ecosystem Condition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Phenology Indicators | Ecosystem Condition Indicators |
---|---|
|
|
| |
|
|
| |
|
|
Parameter | Value | Description |
---|---|---|
Spike method | 1 | Spike method: 0 = no spike filtering, 1 = method based on median filtering, 2 = weights from STL, 3 = weights from STL multiplied with original weights. |
Spike value | 2 | Determines the degree of removal and a low value will remove more spikes. |
STL stiffness value | 2 | STL trend stiffness parameter. Its value is between 1 and 10 with a default of 3. |
Seasonal parameter | 1 | A value close to 0 will attempt to fit two seasons per year and a value near 1 attempt to fit one season. |
Number of envelope iterations | 1 | Number of iterations for upper envelope adaptation (3,2,1). |
Adaptation strength | 2 | Envelope adaptation strength. The maximum strength is 10. |
SG window size | 4 | The half window for SG filtering. Large values will give a high degree of smoothing. |
Start/end of season | 1 | Season start method for determining the start/end of the season based on the intersection of the fitted curve: 1 = Seasonal amplitude, at the point where the curve intersects a proportion of the seasonal amplitude; 2 = absolute value, at the point where the curve intersects an absolute value in units of the data; 3 = relative amplitude, at the point where the curve intersects a proportion of a relative seasonal amplitude; 4 = STL trend, at the intersection with the trend line from STL. |
Season start/end | 0.25 | Values for determining season start/end. If the start method is 1 or 3, the value must be between 0 and 1. |
References
- Cai, B.; Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. J. Remote Sens. 2009, 4619, 1170–1186. [Google Scholar]
- Wei, F.; Wang, S.; Fu, B.; Pan, N.; Feng, X.; Zhao, W.; Wang, C. Vegetation dynamic trends and the main drivers detected using the ensemble empirical mode decomposition method in East Africa. Land. Degrad. Dev. 2018, 29, 2542–2553. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Paz-Kagan, T.; Panov, N.; Peeters, A.; Tsoar, A.; Karnieli, A. Time series analysis of vegetation-cover response to environmental factors and residential development in a dryland region. GIsci Remote Sens. 2019, 56, 362–387. [Google Scholar] [CrossRef]
- De Jong, R.; De Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 2012, 9, 71–77. [Google Scholar] [CrossRef]
- Brandon, T.; Ellison, A.M.; Fraser, W.R.; Gorman, K.B.; Holbrook, S.J.; Laney, C.M.; Ohman, M.D.; Peters, D.P.C.; Pillsbury, F.C.; Rassweiler, A.; et al. Analysis of Abrupt Transitions in Ecological Systems; Harvard University: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Browning, D.M.; Maynard, J.J.; Karl, J.W.; Peters, D.C. Breaks in MODIS time series portend vegetation change: Verification using long-term data in an arid grassland ecosystem: Verification. Ecol. Appl. 2017, 27, 1677–1693. [Google Scholar] [CrossRef]
- Mondal, S.; Jeganathan, C.; Amarnath, G.; Pani, P. Time-series cloud noise mapping and reduction algorithm for improved vegetation and drought monitoring. GIsci Remote Sens. 2017, 54, 202–229. [Google Scholar] [CrossRef]
- Guan, X.; Huang, C.; Zhang, R. Article integrating modis and landsat data for land cover classification by multilevel decision rule. Land 2021, 10, 208. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. Bioscience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Yang, D.; Su, H.; Yong, Y. MODIS-Landsat Data Fusion for Estimating Vegetation Dynamics—A Case Study for Two Ranches in Southwestern Texas; Conference Proceedings Paper—Remote Sensing. In Proceedings of the 1st International Electronic Conference on Remote Sensing, Online, 22 June–5 July 2015; p. d016. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Hilker, T.; Anderson, M.C.; Masek, J.G.; Wang, P. Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [Google Scholar]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Omuto, C.T. A new approach for using time-series remote-sensing images to detect changes in vegetation cover and composition in drylands: A case study of eastern Kenya. Int. J. Remote Sens. 2011, 32, 6025–6045. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Kumar, U.; Dasgupta, A. Analysis of Land Surface Temperature and Rainfall with Landscape Dynamics in Western Ghats, India; Indian Institute of Science: Bangalore, India, 2016. [Google Scholar]
- Eklundh, L.; Jöhnsson, P. TIMESAT 3.3 Software Manual. 2017, pp. 1–92. Available online: https://web.nateko.lu.se/timesat/docs/TIMESAT33_SoftwareManual.pdf (accessed on 25 March 2022).
- Rodrigues, A.S. Analysis of Vegetation Dynamics Using Time-Series Vegetation Index Data from Earth Observation Satellites. Ph.D. Thesis, University of Porto, Porto, Portugal, 2014; pp. 1–156. [Google Scholar]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Colditz, R.R.; Gessner, U.; Conrad, C.; van Zyl, D.; van Zyl, D.; Malherbe, J.; Landmann, T.; Schmidt, M.; Dech, S. Dynamics of MODIS time series for ecological applications in Southern Africa. In Proceedings of the MultiTemp 2007–2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Spatio-temporal statistical methods for modelling land surface phenology. In Phenological Research: Methods for Environmental and Climate Change Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–208. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Chen, J.; Zhu, X.; Shen, M.; Gan, L.; Gao, X. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecol. Indic. 2020, 116, 106456. [Google Scholar] [CrossRef]
- Palareti, G.; Legnani, C.; Cosmi, B.; Antonucci, E.; Erba, N.; Poli, D.; Testa, S.; Tosetto, A. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 2016, 38, 42–49. [Google Scholar] [CrossRef]
- Djebou, D.C.S.; Singh, V.P.; Frauenfeld, O.W. Vegetation response to precipitation across the aridity gradient of the southwestern United states. J. Arid. Environ. 2015, 115, 35–43. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Ayalew, Z.; Abele, S. Economic and financial sustainability of an Acacia decurrens-based Taungya system for farmers in the Upper Blue Nile Basin, Ethiopia. Land Use Policy 2020, 90, 104331. [Google Scholar] [CrossRef]
- Garrity, D.P. Agroforestry and the achievement of the Millennium Development Goals. Agrofor. Syst. 2004, 61, 5–17. [Google Scholar]
- Negelle, A.; Central, S. Expansion of Eucalypt Farm Forestry and Its Determinants in Arsi Negelle District, South Central Ethiopia. Small-Scale For. 2012, 11, 389–405. [Google Scholar] [CrossRef]
- Bazie, Z.; Feyssa, S.; Amare, T. Effects of Acacia decurrens Willd. tree-based farming system on soil quality in Guder watershed, North Western highlands of Ethiopia. Cogent Food Agric. 2020, 6, 1743622. [Google Scholar] [CrossRef]
- Orchard, S.; Smith, E. Managing the Environmental Effects of Plantation Forestry: A Case Study in the Ngunguru Catchment, Northland, New Zealand. 2013. Available online: https://www.researchgate.net/publication/298679188_Managing_the_environmental_effects_of_plantation_forestry_a_case_study_in_the_Ngunguru_catchment_Northland_New_Zealan (accessed on 4 July 2022).
- Inge, I.; Walle, V. Carbon Sequestration in Short-Rotation Forestry Plantations and in Belgian Forest Ecosystems. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2007; pp. 1–244. [Google Scholar]
- Alemayehu, B. GIS and Remote Sensing Based Land Use/Land Cover Change Detection and Prediction in Fagita Lekoma Woreda, Awi Zone, Northwestern Ethiopia. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015; pp. 1–85. [Google Scholar]
- Wondie, M.; Mekuria, W. Planting of acacia decurrens and dynamics of land cover change in fagita lekoma district in the Northwestern Highlands of Ethiopia. Mt. Res. Dev. 2018, 38, 230–239. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A. Changes in ecosystem service values strongly influenced by human activities in contrasting agro-ecological environments. Ecol. Process 2021, 10, 1–18. [Google Scholar] [CrossRef]
- Belayneh, Y.; Ru, G.; Guadie, A.; Teffera, Z.L. Forest cover change and its driving forces in Fagita Lekoma. J. For. Res. 2020, 31, 1567–1582. [Google Scholar] [CrossRef]
- Worku, T.; Mekonnen, M.; Yitaferu, B.; Cerdà, A. Conversion of crop land use to plantation land use, northwest Ethiopia. Trees For. People 2021, 3, 100044. [Google Scholar] [CrossRef]
- Abbes, A.B.; Bounouh, O.; Farah, I.R.; de Jong, R.; Martínez, B. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. Eur. J. Remote Sens. 2018, 51, 607–615. [Google Scholar] [CrossRef]
- Bonannella, C.; Chirici, G.; Travaglini, D.; Pecchi, M.; Vangi, E.; D’Amico, G.; Giannetti, F. Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy. Fire 2022, 5, 68. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, C.; Guo, H.; Chen, W.; Yun, W.; Gao, L.; Wang, H. Analyzing ecological vulnerability and vegetation phenology response using NDVI time series data and the BFAST algorithm. Remote Sens. 2020, 12, 3371. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Mazza, E.; Francini, S.; Travaglini, D.; Pegna, R. Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Ann. For. Sci. 2020, 77, 40. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Alemu, G.T.; Tsunekawa, A.; Haregeweyn, N.; Nigussie, Z.; Tsubo, M.; Elias, A.; Ayalew, Z.; Berihun, D.; Adgo, E.; Meshesha, D.T.; et al. Smallholder farmers’ willingness to pay for sustainable land management practices in the Upper Blue Nile basin, Ethiopia. Environ. Dev. Sustain. 2021, 23, 5640–5665. [Google Scholar] [CrossRef]
- Ebabu, K.; Atsushi, T.; Nigussie, H.; Enyew, A.; Tsegaye, M.D.; Dagnachew, A.; Tsugiyuki, M.; Mitsuru, T.; Dagnenet, S.; Almaw, F.A.; et al. Analyzing the variability of sediment yield: A case study from paired watersheds in the Upper Blue Nile basin, Ethiopia. Geomorphology 2018, 303, 446–455. [Google Scholar] [CrossRef]
- Maynard, J.J.; Karl, J.W.; Browning, D.M. Effect of spatial image support in detecting long-term vegetation change from satellite time-series. Landsc. Ecol. 2016, 31, 2045–2062. [Google Scholar] [CrossRef]
- Viña, A.; Liu, W.; Zhou, S.; Huang, J.; Liu, J. Land surface phenology as an indicator of biodiversity patterns. Ecol. Indic. 2016, 64, 281–288. [Google Scholar] [CrossRef]
- Teferi, E.; Uhlenbrook, S.; Bewket, W. Inter-annual and seasonal trends of vegetation condition in the Upper Blue Nile (Abay) Basin: Dual-scale time series analysis. Earth Syst. Dyn. 2015, 6, 617–636. [Google Scholar] [CrossRef]
- Eklundh, L.; Per, J. Chapter 7 TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. In Remote Sensing Time Series; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Huete, A.R. Modis Vegetation Index Algorithm Theoretical Basis v3. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 17 January 2022).
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Gross, D. Monitoring Agricultural Biomass Using NDVI Time Series; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2005; pp. 1–17. [Google Scholar]
- Tomov, H.D. Automated Temporal NDVI Analysis over the Middle East for the Period. Master’s Thesis, Lund University, Lund, Sweden, 2016; pp. 1–129. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. 2002. Available online: www.elsevier.com/locate/rse (accessed on 23 March 2022).
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Stanimirova, R.; Cai, Z.; Melaas, E.K.; Gray, J.M.; Lars, E.; Per, J.; Friedl, M.A. An empirical assessment of the MODIS land cover dynamics and TIMESAT land surface phenology algorithms. Remote Sens. 2019, 11, 2201. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, S.; Lin, H. Monitoring the vegetation dynamics in the dongting lake wetland from 2000 to 2019 using the BEAST algorithm based on dense landsat time series. Appl. Sci. 2020, 10, 4209. [Google Scholar] [CrossRef]
- Li, Y.; Qin, Y.; Ma, L.; Pan, Z. Climate change: Vegetation and phenological phase dynamics. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 495–509. [Google Scholar] [CrossRef]
- Heumann, B.W.; Seaquist, J.W.; Eklundh, L.; Jönsson, P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ. 2007, 108, 385–392. [Google Scholar] [CrossRef]
- Pockrandt, B.R. A Multi-Year Comparison of Vegetation Phenology Between Military Training Lands and Native Tallgrass Prairie Using TIMESAT and Moderate-Resolution Satellite Imagery. Implement. Sci. 2012, 39, 1–24. Available online: https://krex.k-state.edu/bitstream/handle/2097/17320/BryannaPockrandt2014.pdf?sequence=1&isAllowed=y (accessed on 15 February 2022).
- Lebrini, Y.; Boudhar, A.; Htitiou, A.; Hadria, R.; Lionboui, H.; Bounoua, L.; Benabdelouahab, T. Remote monitoring of agricultural systems using NDVI time series and machine learning methods: A tool for an adaptive agricultural policy. Arab. J. Geosci. 2020, 13, 796. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Khan, S.A.; Vanselow, K.A.; Sass, O.; Samimi, C. Detecting abrupt change in land cover in the eastern Hindu Kush region using Landsat time series (1988–2020). J. Mt. Sci. 2022, 19, 1699–1716. [Google Scholar] [CrossRef]
- Watts, L.M.; Laffan, S.W. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ. 2014, 154, 234–245. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Jia, G.S. Precipitation as a control of vegetation phenology for temperate steppes in China. Atmos. Ocean. Sci. Lett. 2016, 9, 162–168. [Google Scholar] [CrossRef]
- Shi, S.; Yang, P.; van der Tol, C. Spatial-temporal dynamics of land surface phenology over Africa for the period of 1982–2015. Heliyon 2023, 9, e16413. [Google Scholar] [CrossRef]
- Sharma, G. Land Surface Phenology as an Indicator of Conservation Policies like Natura2000; Lund: Göteborg, Sweden, 2016. [Google Scholar]
- Chamberlain, D.A.; Phinn, S.R.; Possingham, H.P. Mangrove Forest cover and phenology with landsat dense time series in central queensland, australia. Remote Sens. 2021, 13, 3032. [Google Scholar] [CrossRef]
- Deka, J.; Kalita, S.; Khan, M.L. Vegetation Phenological Characterization of Alluvial Plain Shorea robusta-dominated Tropical Moist Deciduous Forest of Northeast India Using MODIS NDVI Time Series Data. J. Indian. Soc. Remote Sens. 2019, 47, 1287–1293. [Google Scholar] [CrossRef]
- Hayet, S.; Sujan, K.M.; Mustari, A.; Miah, M.A. Hemato-biochemical profile of turkey birds selected from Sherpur district of Bangladesh. Int. J. Adv. Res. Biol. Sci. 2021, 8, 1–5. [Google Scholar] [CrossRef]
- Martínez, J.J.R.; Gao, Y. Forest Disturbance Analysis by Phenology of Forest Covers in Mexico Using Time Series NDVI Data for the Period of 2014–2016. 2020. Available online: http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/ (accessed on 11 August 2023).
- Walker, J.J.; Soulard, C.E. Phenology patterns indicate recovery trajectories of ponderosa pine forests after high-severity fires. Remote Sens. 2019, 11, 2782. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.D. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data. Sensors 2008, 8, 2017–2042. [Google Scholar] [CrossRef]
- Nghiem, J.; Potter, C.; Baiman, R. Detection of vegetation cover change in renewable energy development zones of southern California using MODIS NDVI time series analysis, 2000 to 2018. Environments 2019, 6, 40. [Google Scholar] [CrossRef]
- Geng, L.; Che, T.; Wang, X. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef]
- Chen, L.; Michishita, R.; Xu, B. ISPRS Journal of Photogrammetry and Remote Sensing Abrupt spatiotemporal land and water changes and their potential drivers in Poyang Lake, 2000–2012. Isprs J. Photogramm. Remote Sens. 2014, 98, 85–93. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, D.T. Factors Affecting Small-Scale Farmers’ Land Allocation and Tree Density Decisions in an Acacia decurrens-Based taungya System in Fagita Lekoma District, North-Western Ethiopia. Small-Scale For. 2017, 16, 219–233. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Yismaw, H. Smallholder Adaptation through Agroforestry: Agent-Based Simulation of Climate and Price Variability in Ethiopia; University of Hohenheim: Stuttgart, Germany, 2021. [Google Scholar]
- Tefera, Y. Drivers and Economic Implications of Shifting Crop based Economy to Charcoal based Economy among Smallholder Farmers in Awi Zone of Amhara Regional State, Ethiopia. Master’s Thesis, Hawassa University, Awasa, Ethiopia, 2020. [Google Scholar]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, D.T.; Abele, S. Farmers’ Perception about Soil Erosion in Ethiopia. Land. Degrad. Dev. 2017, 28, 401–411. [Google Scholar] [CrossRef]
- Nigussie, Z.; Atsushi, T.; Nigussie, H.; Mitsuru, T.; Enyew, A.; Zemen, A.; Steffen, A. The impacts of Acacia decurrens plantations on livelihoods in rural Ethiopia. Land Use Policy 2021, 100, 104928. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Nita, I.-A.; Patriche, C.V.; Dumitraşcu, M.; Roşca, B.; Tişcovschi, A.; Bandoc, G.; Săvulescu, I.; Manoiu, V.-M.; et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecol. Indic. 2022, 136, 108629. [Google Scholar] [CrossRef]
- Mola, A.; Linger, E. Effects of Acacia decurrens (Green wattle) Tree on selected Soil Physico-chemical properties North- western Ethiopia. Res. J. Agric. Environ. Manag. 2017, 6, 95–103. [Google Scholar]
- Bank, W. Ethiopia-Sustainable Land Management Project I and II. Independent Evaluation Group, Project Performance Assessment Report 153559. Washington DC, 2020. Available online: www.worldbank.org (accessed on 11 August 2023).
- Davison, J.E.; Breshears, D.D.; Van Leeuwen, W.J.D.; Casady, G.M. Remotely sensed vegetation phenology and productivity along a climatic gradient: On the value of incorporating the dimension of woody plant cover. Glob. Ecol. Biogeogr. 2011, 20, 101–113. [Google Scholar] [CrossRef]
Vegetation Types | Phenology Indicators | Ecosystem Condition Indicators | ||||||
---|---|---|---|---|---|---|---|---|
SOS | EOS | LOS | PV | BV | Amp | LI | SI | |
Acacia decurrens Plantation | 0.016 | 0.32 | 0.256382 | 0.971338 | 0.927024 | −0.9298 | 0.674328 | −0.49035 |
Eucalyptus Plantation | 0.034 | 0.12 | 0.369648 | 0.951077 | 0.554967 | −0.73172 | 0.621987 | −0.3359 |
Natural Forest | 0.178 | −0.14 | −0.22337 | 0.14324 | 0.363887 | −0.02876 | −0.23459 | −0.50731 |
Grassland | 0.071 | 0.03 | −0.38195 | 0.917557 | 0.902911 | −0.73747 | 0.907974 | −0.69206 |
Cropland | −0.15 | −0.03 | 0.181415 | 0.361984 | 0.116899 | −0.07865 | 0.233017 | 0.123548 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemayehu, B.; Suarez-Minguez, J.; Rosette, J.; Khan, S.A. Vegetation Trend Detection Using Time Series Satellite Data as Ecosystem Condition Indicators for Analysis in the Northwestern Highlands of Ethiopia. Remote Sens. 2023, 15, 5032. https://doi.org/10.3390/rs15205032
Alemayehu B, Suarez-Minguez J, Rosette J, Khan SA. Vegetation Trend Detection Using Time Series Satellite Data as Ecosystem Condition Indicators for Analysis in the Northwestern Highlands of Ethiopia. Remote Sensing. 2023; 15(20):5032. https://doi.org/10.3390/rs15205032
Chicago/Turabian StyleAlemayehu, Bireda, Juan Suarez-Minguez, Jacqueline Rosette, and Saeed A. Khan. 2023. "Vegetation Trend Detection Using Time Series Satellite Data as Ecosystem Condition Indicators for Analysis in the Northwestern Highlands of Ethiopia" Remote Sensing 15, no. 20: 5032. https://doi.org/10.3390/rs15205032
APA StyleAlemayehu, B., Suarez-Minguez, J., Rosette, J., & Khan, S. A. (2023). Vegetation Trend Detection Using Time Series Satellite Data as Ecosystem Condition Indicators for Analysis in the Northwestern Highlands of Ethiopia. Remote Sensing, 15(20), 5032. https://doi.org/10.3390/rs15205032