Spatiotemporal Analysis of Urban Blue Space in Beijing and the Identification of Multifactor Driving Mechanisms Using Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Resources
2.3. Methodology
2.3.1. Spatial Autocorrelation Analysis and Spatial Clustering Analysis
2.3.2. Principal Components Regression Analysis
2.3.3. Grey Relation Analysis
3. Results
3.1. Spatiotemporal Analysis of Blue Space Area
3.1.1. Development Characteristics of the UBS Area in Beijing
3.1.2. Spatial Autocorrelation Analysis of the UBS in Beijing
3.1.3. Spatial Clustering Pattern of the UBS in Beijing
3.2. Spatiotemporal Analysis of the UBS Landscape in Beijing
3.2.1. Analysis of Landscape Indicators
3.2.2. Principal Component Analysis of the UBS Spatial Landscape Indices
3.3. Mechanisms Driving the Area of UBS
3.4. Mechanisms Influencing the UBS Landscape
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ampatzidis, P.; Kershaw, T. A review of the impact of blue space on the urban microclimate. Sci. Total Environ. 2020, 730, 139068. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat Island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Perosa, F.; Fanger, S.; Zingraff-Hamed, A.; Disse, M. A meta-analysis of the value of ecosystem services of floodplains for the Danube River Basin. Sci. Total Environ. 2021, 777, 146062. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Tieges, Z.; Morison, G.; Smith, N.; Chastin, S. A population-based retrospective study of the modifying effect of urban blue space on the impact of socioeconomic deprivation on mental health, 2009–2018. Sci. Rep. 2022, 12, 13040. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Arroyo, A.; Jáuregui, E. On the environmental role of urban lakes in Mexico city. Urban Ecosyst. 2000, 4, 145–166. [Google Scholar] [CrossRef]
- He, B.J.; Zhu, J.; Zhao, D.; Gou, Z.H.; Qi, J.D.; Wang, J. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
- Adams, K.D.; Sada, D.W. Surface water hydrology and geomorphic characterization of a playa lake system: Implications for monitoring the effects of climate change. J. Hydrol. 2014, 510, 92–102. [Google Scholar] [CrossRef]
- Joosse, S.; Hensle, L.; Boonstra, W.J.; Ponzelar, C.; Olsson, J. Fishing in the city for food—A paradigmatic case of sustainability in urban blue space. NPJ Urban Sustain. 2021, 1, 41. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jackson, S.; Tharme, R.E.; Douglas, M.; Flotemersch, J.E.; Zwarteveen, M.; Lokgariwar, C.; Montoya, M.; Wali, A.; Tipa, G.T.; et al. Understanding rivers and their social relations: A critical step to advance environmental water management. WIREs Water 2019, 6, e1381. [Google Scholar] [CrossRef]
- Chang, N.; Luo, L.; Wang, X.C.; Song, J.; Han, J.; Ao, D. A novel index for assessing the water quality of urban landscape lakes based on water transparency. Sci. Total Environ. 2020, 735, 139351. [Google Scholar] [CrossRef]
- Yu, H.; Song, Y.; Chang, X.; Gao, H.; Peng, J. A scheme for a sustainable urban water environmental system during the urbanization process in China. Engineering 2018, 4, 190–193. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. Earth Environ. 2013, 37, 2–28. [Google Scholar] [CrossRef]
- Völker, S.; Kistemann, T. Developing the urban blue: Comparative health responses to blue and green urban open spaces in Germany. Health Place 2015, 35, 196–205. [Google Scholar] [CrossRef]
- Wang, M.; Du, L.; Ke, Y.; Huang, M.; Zhang, J.; Zhao, Y.; Li, X.; Gong, H. Impact of climate variabilities and human activities on surface water extents in reservoirs of Yongding River Basin, China, from 1985 to 2016 based on landsat observations and time series analysis. Remote Sens. 2019, 11, 560. [Google Scholar] [CrossRef]
- Liu, L.; Fryd, O.; Zhang, S. Blue-green infrastructure for sustainable urban stormwater management—Lessons from six municipality-led pilot projects in Beijing and Copenhagen. Water 2019, 11, 2024. [Google Scholar] [CrossRef]
- Huang, H.; Yang, H.; Chen, Y.; Chen, T.; Bai, L.; Peng, Z.R. Urban green space optimization based on a climate health risk appraisal—A case study of Beijing city, China. Urban For. Urban Green. 2021, 62, 127154. [Google Scholar] [CrossRef]
- Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef]
- Dou, Y.; Zhen, L.; De Groot, R.; Du, B.; Yu, X. Assessing the importance of cultural ecosystem services in urban areas of Beijing municipality. Ecosyst. Serv. 2017, 24, 79–90. [Google Scholar] [CrossRef]
- Gašparović, S.; Sopina, A.; Zeneral, A. Impacts of Zagreb’s urban development on dynamic changes in stream landscapes from mid-twentieth century. Land 2022, 11, 692. [Google Scholar] [CrossRef]
- Hysa, A. Introducing transversal connectivity index (TCI) as a method to evaluate the effectiveness of the blue-green infrastructure at metropolitan scale. Ecol. Indic. 2021, 124, 107432. [Google Scholar] [CrossRef]
- Luo, S.; Xie, J.; Furuya, K. Assessing the preference and restorative potential of urban park blue space. Land 2021, 10, 1233. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, W.; Huang, W.; Huang, L.; Zhang, D.; Yang, H.; Yuan, L. Characterizing spatiotemporal dynamics of land cover with multi-temporal remotely sensed imagery in Beijing during 1978–2010. Arab. J. Geosci. 2014, 7, 3945–3959. [Google Scholar] [CrossRef]
- Wu, J.; Yang, S.; Zhang, X. Interaction analysis of urban blue-green space and built-up area based on coupling model—A case study of Wuhan central city. Water 2020, 12, 2185. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Yuan, D.; Yu, K.; Su, Y. Temporal-spatial changes about the landscape pattern of water system and their relationship with food and energy in a mega city in China. Ecol. Model. 2019, 401, 75–84. [Google Scholar] [CrossRef]
- Cao, H.; Liu, J.; Chen, J.; Gao, J.; Wang, G.; Zhang, W. Spatiotemporal patterns of urban land use change in typical cities in the greater mekong subregion (GMS). Remote Sens. 2019, 11, 801. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, G.; Wang, X.; Fan, P. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: A case study of the Heihe River Basin, China. Front. Earth Sci. 2017, 11, 629–642. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Shi, M.; Hu, S.; Xu, D. Urban blue–green space landscape ecological health assessment based on the integration of pattern, process, function and sustainability. Sci. Rep. 2022, 12, 7707. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.; He, K.; Gao, Q.; Qin, F. Research on land use change and ecological environment effect based on remote sensing sensor technology. J. Sens. 2021, 2021, 4351733. [Google Scholar] [CrossRef]
- Hurford, A.P.; Parker, D.J.; Priest, S.J.; Lumbroso, D.M. Validating the return period of rainfall thresholds used for extreme rainfall alerts by linking rainfall intensities with observed surface water flood events. J. Flood Risk Manag. 2012, 5, 134–142. [Google Scholar] [CrossRef]
- Brinkmann, K.; Hoffmann, E.; Buerkert, A. Spatial and temporal dynamics of urban wetlands in an Indian megacity over the past 50 years. Remote Sens. 2020, 12, 662. [Google Scholar] [CrossRef]
- Suligowski, R.; Ciupa, T.; Cudny, W. Quantity assessment of urban green, blue, and grey spaces in Poland. Urban For. Urban Green. 2021, 64, 127276. [Google Scholar] [CrossRef]
- Steele, M.K.; Heffernan, J.B. Morphological characteristics of urban water bodies: Mechanisms of change and implications for ecosystem function. Ecol. Appl. 2014, 24, 1070–1084. [Google Scholar] [CrossRef] [PubMed]
- Elmore, A.J.; Kaushal, S.S. Disappearing headwaters: Patterns of stream burial due to urbanization. Front. Ecol. Environ. 2008, 6, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Brans, K.I.; Engelen, J.M.T.; Souffreau, C.; De Meester, L. Urban hot-tubs: Local urbanization has profound effects on average and extreme temperatures in ponds. Landsc. Urban Plan. 2018, 176, 22–29. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Xu, Z.; Lyu, D.; Du, Y.; Qiao, R.; Wu, J. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landsc. Urban Plan. 2020, 202, 103873. [Google Scholar] [CrossRef]
- Holder, C.D.; Gibbes, C. Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrol. Sci. J. 2017, 62, 182–190. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Pan, H.; Deal, B.; Destouni, G.; Zhang, Y.; Kalantari, Z. Sociohydrology modeling for complex urban environments in support of integrated land and water resource management practices. Land Degrad. Dev. 2018, 29, 3639–3652. [Google Scholar] [CrossRef]
- Clare, S.; Krogman, N.; Foote, L.; Lemphers, N. Where is the avoidance in the implementation of wetland law and policy? Wetl. Ecol. Manag. 2011, 19, 165–182. [Google Scholar] [CrossRef]
- Leigh, N.G.; Lee, H. Sustainable and resilient urban water systems: The role of decentralization and planning. Sustainability 2019, 11, 918. [Google Scholar] [CrossRef]
- Ianoş, I.; Sorensen, A.; Merciu, C. Incoherence of urban planning policy in Bucharest: Its potential for land use conflict. Land Use Policy 2017, 60, 101–112. [Google Scholar] [CrossRef]
- Jiang, T.T.; Pan, J.F.; Pu, X.M.; Wang, B.; Pan, J.J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 2015, 164, 265–275. [Google Scholar] [CrossRef]
- Völker, S.; Kistemann, T. The impact of blue space on human health and well-being—Salutogenetic health effects of inland surface waters: A review. Int. J. Hyg. Environ. Health 2011, 214, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.L. Managing urban water security: Challenges and prospects in Nepal. Environ. Dev. Sustain. 2021, 23, 241–257. [Google Scholar] [CrossRef]
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Karmaoui, A.; Ben Salem, A.; El Jaafari, S.; Chaachouay, H.; Moumane, A.; Hajji, L. Exploring the land use and land cover change in the period 2005–2020 in the province of Errachidia, the pre-sahara of Morocco. Front. Earth Sci. 2022, 10, 962097. [Google Scholar] [CrossRef]
- Investing General Situation of Beijing. Available online: http://www.beijing.gov.cn/renwen/bjgk/ (accessed on 4 April 2023).
- The People’s Government of Beijing Municipality. Beijing 2021 Statistical Bulletin on National Economic and Social Development. Available online: https://www.beijing.gov.cn/gongkai/shuju/tjgb/202203/t20220301_2618806.html (accessed on 1 March 2022).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Raymond, C.M.; Gottwald, S.; Kuoppa, J.; Kyttä, M. Integrating multiple elements of environmental justice into urban blue space planning using public participation geographic information systems. Landsc. Urban Plan. 2016, 153, 198–208. [Google Scholar] [CrossRef]
- Bedla, D.; Halecki, W. The value of river valleys for restoring landscape features and the continuity of urban ecosystem functions—A review. Ecol. Indic. 2021, 129, 107871. [Google Scholar] [CrossRef]
- Avashia, V.; Garg, A. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy 2020, 95, 104571. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Tao, M.; Huang, C.; Sun, J.; Wang, S. Assessing the ecological balance between supply and demand of blue-green infrastructure. J. Environ. Manag. 2021, 288, 112454. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Taramelli, A.; Lissoni, M.; Piedelobo, L.; Schiavon, E.; Valentini, E.; Nguyen Xuan, A.; González-Aguilera, D. Monitoring green infrastructure for natural water retention using Copernicus global land products. Remote Sens. 2019, 11, 1583. [Google Scholar] [CrossRef]
- Crisigiovanni, E.; Nascimento, E.; Godoy, R.; Filho, P.; Vidal, C.; Martins, K.G. Inadequate riparian zone use directly decreases water quality of a low-order urban stream in southern Brazil. Rev. Ambiente Água 2020, 15, e2451. [Google Scholar] [CrossRef]
- Carraça, M.G.D.; Collier, C.G. Modelling the impact of high-rise buildings in urban areas on precipitation initiation. Meteorol. Appl. 2007, 14, 149–161. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa. Sustain. Cities Soc. 2022, 80, 103798. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Ho, H.H.; Yong, Y. Eco-health evaluation for the Shanghai metropolitan area during the recent industrial transformation (1990–2003). J. Environ. Manag. 2008, 88, 1047–1055. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X.; Jiali, S.; Bao, Z. Remote sensing and GIS-based analysis of urban dynamics and modelling of its drivers, the case of Pingtan, China. Environ. Dev. Sustain. 2020, 22, 2159–2186. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. B Methodol. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Cheng, X.; Wallace, J.M. Cluster analysis of the northern hemisphere wintertime 500-hPa height field: Spatial patterns. J. Atmos. Sci. 1993, 50, 2674–2696. [Google Scholar] [CrossRef]
- ArcGIS Resource. ArcGIS Resource Center. Available online: http://resources.arcgis.com/zh-cn/help/main/10.2/ (accessed on 5 May 2023).
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Wentzell, P.D.; Montoto, L.V. Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom. Intell. Lab. Syst. 2003, 65, 257–279. [Google Scholar] [CrossRef]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Liu, S.F.; Xie, N.M.; Forrest, J. On new models of grey incidence analysis based on visual angle of similarity and nearness. Syst. Eng. Theory Pract. 2010, 30, 881–887. [Google Scholar]
- Sun, F. Discussion on grey correlation analysis method and its application. Sci. Technol. Inf. 2010, 17, 880–882. [Google Scholar] [CrossRef]
- Das, A.; Basu, T. Assessment of peri-urban wetland ecological degradation through importance-performance analysis (IPA): A study on Chatra Wetland, India. Ecol. Indic. 2020, 114, 106274. [Google Scholar] [CrossRef]
- Amirafshar, V.; Azadeh, L.; Tan, Y. Blue and Green Spaces as Therapeutic Landscapes: Health Effects of Urban Water Canal Areas of Isfahan. Sustainability 2018, 10, 4010. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, L.; Lu, C. Study on the water footprint and external water dependency of Beijing. Water Supply 2016, 16, 1077–1085. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Xiang, C.; Xia, L.; Zhang, K.; Shao, W.; Luan, Q. Assessment of the energy use for water supply in Beijing. Energy Procedia 2018, 152, 271–280. [Google Scholar] [CrossRef]
- China Weather Network. Weather and Climate Characteristics in Beijing during Flood Season in 2015. Available online: http://bj.weather.com.cn/sygdt/09/2391386.shtml (accessed on 4 April 2023).
- Zhou, C.; Lan, H.; Gong, H.; Zhang, Y.; Warner, T.A.; Clague, J.J.; Wu, Y. Reduced rate of land subsidence since 2016 in Beijing, China: Evidence from Tomo-PSInSAR using RadarSAT-2 and Sentinel-1 datasets. Int. J. Remote Sens. 2020, 41, 1259–1285. [Google Scholar] [CrossRef]
- The People’s Government of Beijing Municipality. Policies on the Prevention and Control of Water Pollution in Beijing. Available online: http://www.beijing.gov.cn/zhengce/zhengcefagui/201905/t20190522_58901.html (accessed on 4 April 2023).
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- The People’s Government of Beijing Municipality. Beijing Further Accelerated the Implementation of the Three-Year Action Plan for Sewage Treatment and Reclaimed Water Utilization. Available online: http://www.beijing.gov.cn/zhengce/zhengcefagui/201907/t20190701_100007.html (accessed on 4 April 2023).
- Mirsafa, M. The water sensitive future of Lahijan. Public spaces as integrated components of stormwater management infrastructure. TeMA 2017, 10, 25–40. [Google Scholar] [CrossRef]
- Tu, W.; Hu, Z.; Li, L.; Cao, J.; Jiang, J.; Li, Q.; Li, Q. Portraying urban functional zones by coupling remote sensing imagery and human sensing data. Remote Sens. 2018, 10, 141. [Google Scholar] [CrossRef]
Number | Name | Dataset | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
1 | POP | Gridded Population of the World, Version 4 | 100 m | Yearly |
2 | PREP | ERA5-Land | 0.1 × 0.1 | Daily |
3 | T | Aqua/Terra MODIS MYD11A2 | 1000 m | Eight days |
4 | FVC | MODIS MCD12Q1 | 500 m | Yearly |
5 | ASP | MODIS MCD12Q1 | 500 m | Yearly |
6 | NDVI | MODIS NDVI MYD13Q1 V6 | 250 m | Sixteen days |
7 | EVI | MODIS NDVI MYD13Q1 V6 | 250 m | Sixteen days |
8 | GDP | Beijing Statistical Yearbook; Beijing Statistical Bulletin of National Economic and Social Development | _ | Yearly |
9 | UEM | Beijing and each districts statistical yearbook | _ | Yearly |
10 | EDUI | Beijing and each districts statistical yearbook | _ | Yearly |
11 | STI | Beijing and each districts statistical yearbook | _ | Yearly |
12 | UBS | JRC Monthly Water History, v1.3 | 30 m | Monthly |
LPI (Largest Patch Index) | Area Percentage of Maximum Patch |
---|---|
SPLIT (Splitting index) | Dispersion among different patches at a landscape scale. The higher the value of SPLIT, the more separation between studied patch types. |
CONTAG (Contagion index) | Spatial collection and decentralization. The smaller the value of CONTAG, the sparser each patch type. |
AI (Aggregation index) | Connectivity between patches of all patch types. The lower the value is, the more discrete the landscape. |
PD (Patch density) | Patch density in the landscape reflects the degree and type of landscape fragmentation. Patch density represents the spatial heterogeneity of the landscape per unit area. |
NP (Number of patches) | Number of all patches distributed in the landscape. |
LSI (Landscape shape index) | Indicates the change in landscape form. The higher the value, the more complex the shape. |
SHDI (Shannon’s diversity index) | Reflects how many different quantitative measures are in a dataset. |
SHEI (Shannon’s evenness index) | Describes the extent of the landscape controlled by minority patch types. |
PAFRAC (Perimeter area fractal dimension) | The intensity index reflects the disturbance in landscape patterns due to human activities. The higher the value, the greater the landscape’s external disturbance. |
Component | Eigenvalue | Contribution Rate | Cumulative Contribution Rate |
---|---|---|---|
1 | 8.162 | 81.623 | 81.623 |
2 | 1.228 | 12.280 | 93.903 |
3 | 0.328 | 3.276 | 97.179 |
4 | 0.222 | 2.224 | 99.403 |
5 | 0.043 | 0.427 | 99.830 |
6 | 0.014 | 0.140 | 99.970 |
7 | 0.003 | 0.029 | 99.999 |
8 | 0.000 | 0.001 | 100.000 |
9 | 0.000 | 0.000 | 100.000 |
10 | 0.000 | 0.000 | 100.000 |
Influencing Factors | Correlation Coefficients of UBS Area (S) | Correlation Coefficients of UBS Landscapes (Z) |
---|---|---|
UEM | 0.798 | 0.664 |
EDUI | 0.759 | 0.665 |
STI | 0.758 | 0.686 |
NDVI | 0.697 | 0.617 |
T | 0.692 | 0.685 |
GDP | 0.689 | 0.691 |
POP | 0.68 | 0.692 |
FVC | 0.659 | 0.493 |
EVI | 0.658 | 0.585 |
PREP | 0.62 | 0.732 |
ASP | 0.5 | 0.656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhen, W.; Li, Y.; Zhang, N.; Shi, Y.; Shi, D. Spatiotemporal Analysis of Urban Blue Space in Beijing and the Identification of Multifactor Driving Mechanisms Using Remote Sensing. Remote Sens. 2023, 15, 5182. https://doi.org/10.3390/rs15215182
Chen Y, Zhen W, Li Y, Zhang N, Shi Y, Shi D. Spatiotemporal Analysis of Urban Blue Space in Beijing and the Identification of Multifactor Driving Mechanisms Using Remote Sensing. Remote Sensing. 2023; 15(21):5182. https://doi.org/10.3390/rs15215182
Chicago/Turabian StyleChen, Ya, Weina Zhen, Yu Li, Ninghui Zhang, Yishao Shi, and Donghui Shi. 2023. "Spatiotemporal Analysis of Urban Blue Space in Beijing and the Identification of Multifactor Driving Mechanisms Using Remote Sensing" Remote Sensing 15, no. 21: 5182. https://doi.org/10.3390/rs15215182
APA StyleChen, Y., Zhen, W., Li, Y., Zhang, N., Shi, Y., & Shi, D. (2023). Spatiotemporal Analysis of Urban Blue Space in Beijing and the Identification of Multifactor Driving Mechanisms Using Remote Sensing. Remote Sensing, 15(21), 5182. https://doi.org/10.3390/rs15215182