Present-Day Crustal Deformation of the Northwestern Tibetan Plateau Based on InSAR Measurements
Abstract
1. Introduction
2. Methods
2.1. InSAR Processing
2.1.1. ENVISAT Dataset
2.1.2. Multiple Error Correction
2.2. Constructing the Line-of-Sight (LOS) Velocity Map
3. Results
3.1. LOS Velocity Field
3.2. Displacement Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.N.N.; Simons, M.; Hetland, E.A.; Muse, P.; DiCaprio, C. A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochem. Geophys. Geosyst 2010, 11, Q09002. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.Z.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; Lai, X.A.; You, X.; Niu, Z.; Wu, J.; Li, Y.; et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef]
- England, P.; Molnar, P. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys. J. Int. 1997, 130, 551–582. [Google Scholar] [CrossRef]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Bock, Y.; Fang, P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J. Geophys. Res. Solid Earth 1998, 103, 27051–27067. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, X.; Liu, H.; Kumar, P.; Pei, S.; Kind, R.; Zhang, Z.; Teng, J.; Ding, L.; Gao, X.; et al. The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. USA 2010, 107, 11229–11233. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Yu, G.; Liu-Zeng, J.; Oskin, M.E.; Shao, G. Structure and geometry of the Aksay restraining double bend along the Altyn Tagh Fault, northern Tibet, imaged using magnetotelluric method. Geophys. Res. Lett. 2017, 44, 4090–4097. [Google Scholar] [CrossRef]
- Shen, Z.K.; Wang, M.; Li, Y.; Jackson, D.D.; Yin, A.; Dong, D.; Fang, P. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res. Solid Earth 2001, 106, 30607–30621. [Google Scholar] [CrossRef]
- Mériaux, A.-S.; Ryerson, F.J.; Tapponnier, P.; Van der Woerd, J.; Finkel, R.C.; Xu, X.; Xu, Z.; Caffee, M.W. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. J. Geophys. Res. Atmos. 2004, 109, B6. [Google Scholar] [CrossRef]
- Mériaux, A.-S.; Tapponnier, P.; Ryerson, F.J.; Xiwei, X.; King, G.; Van der Woerd, J.; Finkel, R.C.; Haibing, L.; Caffee, M.W.; Zhiqin, X.; et al. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. J. Geophys. Res. Solid Earth 2005, 110, 229–246. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Molnar, P.; Xu, X. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics 2007, 26, TC5010. [Google Scholar] [CrossRef]
- Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Gosse, J.; Chen, X.; Wang, X.F. Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China. J. Geophys. Res. Solid Earth 2009, 114, B04401. [Google Scholar] [CrossRef]
- He, J.; Vernant, P.; Chéry, J.; Wang, W.; Lu, S.; Ku, W.; Xia, W.; Bilham, R. Nailing down the slip rate of the Altyn Tagh fault. Geophys. Res. Lett. 2013, 40, 5382–5386. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, C.; Wen, Y.; Liu, Y. Interseismic Deformation of the Altyn Tagh Fault Determined by Interferometric Synthetic Aperture Radar (InSAR) Measurements. Remote Sens. 2016, 8, 233. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Qu, C.; Liu, Y.; Han, N. Crustal Deformation of the Altyn Tagh Fault Based on GPS. J. Geophys. Res. Solid Earth 2018, 123, 10309–10322. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived from GPS and its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Peltzer, G.; Tapponnier, P.; Armijo, R. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet. Science 1989, 8, 1285–1289. [Google Scholar] [CrossRef]
- Daout, S.; Doin, M.P.; Peltzer, G.; Lasserre, C.; Socquet, A.; Volat, M.; Sudhaus, H. Strain Partitioning and Present-Day Fault Kinematics in NW Tibet From Envisat SAR Interferometry. J. Geophys. Res. Solid Earth 2018, 123, 2462–2483. [Google Scholar] [CrossRef]
- Qiu, J.; Zhu, L.; Wang, S. Study on the Contemporary Tectonic Deformation Pattern of the Middle Altyn Tagh Fault Zone as Revealed by InSAR Measurements. J. Geod. Geodyn. 2018, 38, 783–786. [Google Scholar]
- Avouac, J.P.; Tapponnier, P.; Bai, M.; You, H.; Wang, G. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res. Solid Earth 1993, 98, 6755–6804. [Google Scholar] [CrossRef]
- Mériaux, A.-S.; Van der Woerd, J.; Tapponnier, P.; Ryerson, F.J.; Finkel, R.C.; Lasserre, C.; Xu, X. The Pingding segment of the Altyn Tagh Fault (91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces. J. Geophys. Res. Solid Earth 2012, 117, B09406. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.L.; Le Dain, A.Y.; Armijo, R.; Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Replumaz, A.; Tapponnier, P. Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. Atmos. 2003, 108, 2285. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, P.Z.; Yuan, D.Y.; Zheng, D.W.; Li, C.; Zhang, P.; Yin, J.; Min, W.; Heermance, R.; Chen, J. Deformation on the northern of the Tibetan plateau from GPS measurement and geologic rates of Late Quaternary along the major fault. Chin. J. Geophys. 2009, 52, 2491–2508. [Google Scholar]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Wang, E.; Chen, Z.; Shen, F.; Liu, Y. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef]
- Houseman, G.; England, P. A lithospheric-thickening model for the Indo-Asian collision. World Reg. Geol. 1996, 1, 1–17. [Google Scholar]
- Avouac, J.-P.; Tapponnier, P. Kinematic model of active deformation in central Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef]
- Thatcher, W. How the Continents Deform: The Evidence from Tectonic Geodesy. Annu. Rev. Earth Planet. Sci. 2009, 3737, 237–262. [Google Scholar] [CrossRef]
- Weholt, L.A. Dynamics of the India-Eurasia collision zone. Transl. World Seismol. 2003, 2, 34–56. [Google Scholar]
- England, P.; Molnar, P. Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res. Solid Earth 2005, 110, B12401. [Google Scholar] [CrossRef]
- England, P.; Jackson, J. Active Deformation of the Continents. Annu. Rev. Earth Planet. Sci. 1989, 17, 197–226. [Google Scholar] [CrossRef]
- Meade, B.J. Present-day kinematics at the India-Asia collision zone. Geology 2007, 35, 81–84. [Google Scholar] [CrossRef]
- Thatcher, W. Microplate model for the present-day deformation of Tibet. J. Geophys. Res. Solid Earth 2007, 112, 534–535. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, X.; Yang, S.; Wang, D. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophys. J. Int. 2016, 208, 1088–1102. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Qu, C.; Zhang, Y.; Song, X.; Jiang, Y.; Zhang, G.; Nocquet, J.M.; Gong, W.; Gan, W.; et al. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau. J. Asian Earth Sci. 2017, 150, 87–97. [Google Scholar] [CrossRef]
- Song, X.; Jiang, Y.; Shan, X.; Gong, W.; Qu, C.A. Fine Velocity and Strain Rate Field of Present-Day Crustal Motion of the Northeastern Tibetan Plateau Inverted Jointly by InSAR and GPS. Remote Sens. 2019, 11, 435. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, D.; Zhang, J.; Sui, L. Interseismic Fault Movement of Xianshuihe Fault Zone Based on Across-Fault Deformation Data and InSAR. Pure Appl. Geophys. 2019, 176, 649–667. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.M.; Wu, Y.; Ma, H.S. The Deformation of Active Crustal-Blocks on the Chinese Mainland and Its Relation with Seismic Activity. Earthq. Res. China 2003, 19, 243–254. [Google Scholar]
- Loveless, J.P.; Meade, B.J. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth Planet. Sci. Lett. 2011, 303, 11–24. [Google Scholar] [CrossRef]
- Yue, H.; Shen, Z.K.; Zhao, Z.; Wang, T.; Cao, B.; Li, Z.; Bao, X.; Zhao, L.; Song, X.; Ge, Z.; et al. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2022, 119, e2116445119. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Cheng, J.; Yao, Q.; Zhang, J. Preliminary Study on the Division of the Bayan Har Block Using GPS Data and a Block Model and the Tectonic Implications of the Division. Chin. Earthq. Eng. J. 2018, 5, 175–184. [Google Scholar]
- Dong, P.; Cheng, H.; Shi, Y.; Liu, C.; Qiao, X. Numerical inversion of regional initial tectonic stress based on Monte Carlo method—A case study of Bayan Har block. Chin. J. Geophys. 2019, 8, 80–92. [Google Scholar]
- Sun, Y.; Fan, T.; Zhou, C.; Wu, Z. The Evolution of Stress and Strain around the Bayan Har Block in the Tibetan Plateau. J. Earthq. 2015, 2015, 971628. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Shan, X.; Bürgmann, R.; Gong, W.; Zhang, G. Spatiotemporal Evolution of Postseismic Deformation Following the 2001 Mw7.8 Kokoxili, China, Earthquake from 7 Years of Insar Observations. Remote Sens. 2018, 10, 1988. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Bürgmann, R.; Gong, W.; Shan, X.; Qiao, X.; Zhao, L.; Chen, H.; Liu, L. Large-Scale Crustal Deformation, Slip-Rate Variation, and Strain Distribution Along the Kunlun Fault (Tibet) from Sentinel-1 InSAR Observations (2015–2020). J. Geophys. Res. Solid Earth 2022, 127, e2021JB022892. [Google Scholar] [CrossRef]
- Xu, X.W.; Han, Z.J.; Yang, X.P.; Zhang, S.M.; Yu, G.H.; Zhou, B.G.; Li, F.; Chen, G.H.; Ran, Y.K. Seismotectonic Map in China and its Adjacent Regions; Beijing Seismological Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Cavalié, O.; Lasserre, C.; Doin, M.P.; Peltzer, G.; Sun, J.; Xu, X.; Shen, Z.K. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett. 2008, 275, 246–257. [Google Scholar] [CrossRef]
- Jolivet, R.; Lasserre, C.; Doin, M.P.; Guillaso, S.; Peltzer, G.; Dailu, R.; Sun, J.; Shen, Z.K.; Xu, X. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophys. Res. Solid Earth 2012, 117, B06401. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Hooper, A.; Wright, T.J. A spatially-variable power-law tropospheric correction technique for InSAR data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Webley, P.W.; Bingley, R.M.; Dodson, A.H.; Wadge, G.; Waugh, S.J.; James, I.N. Atmospheric water vapour correction to InSAR surface motion measurements on mountains: Results from a dense GPS network on Mount Etna. Phys. Chem. Earth 2002, 27, 363–370. [Google Scholar] [CrossRef]
- Doin, M.P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38, L17311. [Google Scholar] [CrossRef]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.P.; Peltzer, G.; Li, Z. Improving InSAR geodesy using Global Atmospheric Models. J. Geophys. Res. Solid Earth 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Ducret, G.; Doin, M.P.; Grandin, R.; Lasserre, C.; Guillaso, S. DEM Corrections Before Unwrapping in a Small Baseline Strategy for InSAR Time Series Analysis. Geosci. Remote Sens. Symp. 2014, 11, 696–700. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Kohlhase, A.O.; Kroes, R.; D’Amico, S. Interferometric Baseline Performance Estimations for Multistatic Synthetic Aperture Radar Configurations Derived from GRACE GPS Observations. J. Geod. 2006, 80, 28–39. [Google Scholar] [CrossRef][Green Version]
- Hanssen, R. Radar Interferometry: Data Interpretation and Error Analysis, 1st ed; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 2. [Google Scholar]
- Li, Z.; Fielding, E.J.; Cross, P.; Preusker, R. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 2009, 30, 3343–3363. [Google Scholar] [CrossRef]
- Wen, Y.; Li, Z.; Xu, C.; Ryder, I.; Bürgmann, R. Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series. J. Geophys. Res. Solid Earth 2012, 117, B08405. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Lu, Z.; Jung, H.S.; Hu, J.; Feng, G. A Novel Multitemporal InSAR Model for Joint Estimation of Deformation Rates and Orbital Errors. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3529–3540. [Google Scholar] [CrossRef]
- Heresh, F.; Falk, A. InSAR uncertainty due to orbital errors. Geophys. J. Int. 2014, 199, 549–560. [Google Scholar]
- Zhou, X.Y.; Luo, J.; Wang, Q. Structural features and petroleum geology of the fold-thrust belt in the southern Tarim basin, China. Sci. China (Earth Sci.) 2004, 47, 66–73. [Google Scholar] [CrossRef]
- Liu, X.W.; Zheng, J.J.; Yang, X.; Sun, G.Q.; Su, L.; Wang, Y.D. Sedimentology Revealment to Meso-Cenzoic Tectonic Movement Process of Altun Strike-slip Fault. Nat. Gas. Geosci. 2012, 23, 119–128. [Google Scholar]
- Xu, X.; Wang, F.; Zheng, R.; Chen, W.; Ma, W.; Yu, G.; Chen, G.; Tapponnier, P.; Van Der Woerd, J.; Meriaux, A.S.; et al. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Sci. China 2005, 48, 384–397. [Google Scholar] [CrossRef]
- Savage, J.C.; Burford, R.O. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 1973, 78, 832–845. [Google Scholar] [CrossRef]
- Shen, L.; Hooper, A.; Elliott, J. A spatially-varying scaling method for inSAR tropospheric corrections using a high-resolution weather model. J. Geophys. Res. Solid Earth 2019, 124, 4051–4068. [Google Scholar] [CrossRef]
- Xu, C.J.; Zhu, S. Temporal and spatial movement characteristics of the Altyn Tagh fault inferred from 21 years of InSAR observations. J. Geod. 2019, 93, 1147–1160. [Google Scholar] [CrossRef]
- Xie, X.O.; Wu, Q.Z.; Gan, Y.; Lu, H.F. Hydrocarbon accumulation and structural characteristics of compress-wrench fault belts in Tarim basin. Acta Pet. Sin. 1997, 18, 13–17. [Google Scholar]
- Wang, M.; Wang, F.; Jiang, X.; Tian, J.; Li, Y.; Sun, J.; Shen, Z.K. GPS determined coseismic slip of the 2021 Mw7.4 Maduo, China, earthquake and its tectonic implication. Geophys. J. Int. 2021, 228, 2048–2055. [Google Scholar] [CrossRef]
- Dalaison, M.; Jolivet, R.; Le Pourhiet, L. A snapshot of the long-term evolution of a distributed tectonic plate boundary. Sci. Adv. 2023, 9, eadd7235. [Google Scholar] [CrossRef] [PubMed]
Reference | Slip Rate (mm/y) | Locking Depth (km) | Longitude |
---|---|---|---|
Zhu et al. [15] | 8.0 ± 0.7 | 14.5 ± 3.0 | 84.0–85.5°E |
Zheng et al. [16] | 8.1 ± 0.7 | 13.0 ± 4.0 | 86°E |
Daout et al. [20] | 10.5 | 17 | 83.5–87.0°E |
Shen et al. [69] | 12.3 ± 1.5 | 10.0 ± 2.3 | 85.3°E |
Wang et al. [18] | 11 | - | 83°E |
He et al. [14] | 9.0 ± 4.0 | 14.5 | 86°E |
Li et al. [17] | 8.5 ± 1.0 | 23.1 ± 9.8 | 86°E |
Xu et al. [70] | 7.4 ± 0.8 | 18.0 | 83.0–84.0°E |
This paper | 6.3 ± 1.4 | 16.3 ± 2.5 | 84.5–85.5°E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Qu, C.; Shan, X.; Song, X.; Zhang, Y.; Li, Y. Present-Day Crustal Deformation of the Northwestern Tibetan Plateau Based on InSAR Measurements. Remote Sens. 2023, 15, 5195. https://doi.org/10.3390/rs15215195
Zhang G, Qu C, Shan X, Song X, Zhang Y, Li Y. Present-Day Crustal Deformation of the Northwestern Tibetan Plateau Based on InSAR Measurements. Remote Sensing. 2023; 15(21):5195. https://doi.org/10.3390/rs15215195
Chicago/Turabian StyleZhang, Guifang, Chunyan Qu, Xinjian Shan, Xiaogang Song, Yingfeng Zhang, and Yanchuan Li. 2023. "Present-Day Crustal Deformation of the Northwestern Tibetan Plateau Based on InSAR Measurements" Remote Sensing 15, no. 21: 5195. https://doi.org/10.3390/rs15215195
APA StyleZhang, G., Qu, C., Shan, X., Song, X., Zhang, Y., & Li, Y. (2023). Present-Day Crustal Deformation of the Northwestern Tibetan Plateau Based on InSAR Measurements. Remote Sensing, 15(21), 5195. https://doi.org/10.3390/rs15215195