Survey on Motion Planning for Multirotor Aerial Vehicles in Plan-Based Control Paradigm
Abstract
:1. Introduction
- Section 2—Motion Modeling—discusses the type of motion model suitable for defining the dynamics of the robot based on the chosen trajectory generation technique. Exact, empirical, and differential flatness models are presented.
- Section 3—Initial Waypoint Generation—surveys state-of-the-art techniques for finding initial tentative waypoints for trajectory generation, focusing on graph search-based algorithms, motion-primitive-based approaches, and fast marching methods.
- Section 4—Initial Trajectory Generation—comprehensively reviews initial trajectory generation techniques. It begins by defining how to formulate a trajectory, followed by a detailed explanation of several interesting techniques, including minimum-snap, polynomial trajectory generation as quadratic programming (QP), unconstrained polynomial trajectory generation, covariant gradients, B-spline, and Bernstein. Finally, it compares several trajectory techniques to highlight their respective strengths and weaknesses.
- Section 5—Free Space Extraction—explains how to extract and incorporate free space into trajectory planning. OctoMap, IRIS, and SFC are the main methods discussed in this section.
- Section 6—Trajectory Refinement—describes the trajectory refinement process.
- Section 7—Horizon-Based Trajectory Planning—presents horizon-based trajectory planning techniques, starting with linear quadratic regulator (LQR) and its variants, such as iterative LQR (iLQR) and extended LQR (ELQR). It then covers advanced techniques, such as model predictive control (MPC) and its variants, including nonlinear MPC (NMPC).
- Section 8—Solvers for Optimization—details various solvers that can be used to solve the optimization problem, starting with quadratic programming formulation. It then lists and describes the usage of mixed-integer quadratic programming (MIQP), gradient-based trajectory optimization (GTO), BOBYQA, and many other solutions.
2. Motion Model Selection
2.1. Exact Model
2.2. Empirical Model
2.3. Differential Flatness
3. Initial Waypoint Identification
4. Initial Trajectory Generation
4.1. Define Trajectory
4.2. Minimum-Snap-Based Trajectory Generation
4.3. Polynomial Trajectory Generation as QP
4.4. Unconstrained Polynomial Trajectory Generation
4.5. Unconstrained Polynomial Trajectory Generation with Collision Avoidance
4.6. Covariant Gradients for Trajectory Generation
4.7. B-Spline-Based Trajectory Generation
Algorithm 1 The B-spline trajectory (p) and its derivative estimation for a given time index t, where p equals . |
|
4.7.1. Convex Hull Property
4.7.2. Continuity
4.8. Bernstein Piece-Wise Trajectory Generation
4.9. Comparison of Several Trajectory Techniques
5. Free Space Extraction
6. Continuous Trajectory Refinement
7. Receding Horizon Trajectory Planning
7.1. LQR-Based Trajectory Generation
7.2. MPC-Based Trajectory Generation
7.3. Disturbance Estimation
8. Solving the Trajectory Planning Problem
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OCP | Optimal Control Problem |
OCPs | Optimal Control Problems |
MHE | Model Horizon Estimation |
NMPC | Nonlinear Model Predictive Control |
LQR | Linear Quadratic Regulator |
iLQR | Iterative Linear Quadratic Regulator |
MPC | Model Predictive Control |
DDP | Differential Dynamic Programming |
NLP | Nonlinear Programming |
QP | Quadratic Programming |
MIQP | Mixed Integer Quadratic Programming |
CBFs | Control Barrier Functions |
SDDM | State-dependent Distance Metric |
CMPCC | Corridor-based Model Predictive Contouring Control |
RRG | Rapidly-exploring Random Graph |
IRIS | Iterative Regional Inflation by Semi-definite Programming |
SFC | Safe Flight Corridor |
JPS | Jump Point Search |
GTO | Gradient-based Trajectory Optimization |
SQP | Sequential Quadratic Programming |
MPCC | Mathematical Program with Complementarity Constraints |
ESDF | Euclidean Signed Distance Field |
PGO | Path-guided Optimization |
LTI | Linear Time Invariant |
TOPP | Time-Optimal Parameterization of a given Path |
CHOMP | Covariant Hamiltonian Optimization for Motion Planning |
MAVs | Multirotor Aerial Vehicles |
MAV | Multirotor Aerial Vehicle |
UAVs | Unmanned Aerial Vehicles |
UAV | Unmanned Aerial Vehicle |
LQG | Linear Quadratic Gaussian |
KF | Kalman Filter |
EO | Elastic Optimization |
QCQP | Quadratically Constrained Quadratic Programming |
RHC | Receding Horizon Control |
BFGS | Broyden–Fletcher–Goldfarb–Shanno |
TSDF | Truncated Signed Distance Field |
PRM | Probabilistic Road Map |
GTC | Geometric Tracking Control |
DoF | Degree of Freedom |
Symbols
State vector and its derivative is denoted as . Term depicts the next state given the current state , and term denotes discrete state at time t equals k | |
Control input. The term denoted as the optimal control inputs | |
Position (m) in and its derivative is denoted as . , stands for position alone * component | |
p | dth-order polynomial, which is a function of time. Term (or ) denote the higher order derivatives of |
Polynomial coefficients, e.g., , where d is the order of the polynomial | |
Velocity (m/s) in and its derivative is denoted as . , stands for velocity alone * component | |
Angular velocity (rad/s) in and its derivative is denoted as | |
Orientation is represented as quaternion in and its derivative is denoted as . , stands for orientation alone * component | |
System input or total trust that is applied for each of the motors in N (Newton) | |
Discrete system dynamics | |
Continuous system dynamics | |
Euler or Runge Kutta discretization time step | |
System output | |
Apices stipulates the qth derivative, for example | |
C | Configuration space that can be one of these: , , , and |
d | Order of polynomial |
Initial trajectory; the optimal trajectory is defined as , trajectory derivatives are defined as and , and trajectory is a function of time, i.e., | |
Regularization parameter | |
c | Formulation of cost function, where denotes the inputs |
A | H representation of polytope, i.e, |
The optimal estimation for states and/or controls after minimizing given cost function | |
g | Equality constraints are denoted by ), whereas inequality constraints are denoted by ) |
References
- Pixhawk 4. 2022. Available online: https://dev.px4.io/v1.9.0 (accessed on 29 January 2022).
- DJI. 2022. Available online: https://www.dji.com/ (accessed on 29 January 2022).
- Singh, B.K.; Kumar, A. Attitude and position control with minimum snap trajectory planning for quadrotor UAV. Int. J. Dyn. Control 2023, 11, 2342–2353. [Google Scholar] [CrossRef]
- Ding, C.; Hu, J.; Zhao, C.; Pan, Q. An Efficient Trajectory Planning Algorithm for High-Speed Quadrotor in Large-Scale and Cluttered Environments. In Proceedings of the 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022), Xi’an, China, 23–25 September 2022; Springer: Singapore, 2023; pp. 1339–1348. [Google Scholar]
- Mao, K.; Welde, J.; Hsieh, M.A.; Kumar, V. Trajectory Planning for the Bidirectional Quadrotor as a Differentially Flat Hybrid System. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 1242–1248. [Google Scholar]
- Park, J.; Jang, I.; Kim, H.J. Decentralized Deadlock-free Trajectory Planning for Quadrotor Swarm in Obstacle-rich Environments. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 1428–1434. [Google Scholar]
- Romero, A.; Penicka, R.; Scaramuzza, D. Time-Optimal Online Replanning for Agile Quadrotor Flight. arXiv 2022, arXiv:2203.09839. [Google Scholar] [CrossRef]
- Kulathunga, G.; Hamed, H.; Devitt, D.; Klimchik, A. Optimization-Based Trajectory Tracking Approach for Multi-Rotor Aerial Vehicles in Unknown Environments. IEEE Robot. Autom. Lett. 2022, 7, 4598–4605. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Xu, C.; Gao, F. Geometrically constrained trajectory optimization for multicopters. IEEE Trans. Robot. 2022, 38, 3259–3278. [Google Scholar] [CrossRef]
- Upadhyay, S.; Richardson, T.; Richards, A. Generation of Dynamically Feasible Window Traversing Quadrotor Trajectories Using Logistic Curve. J. Intell. Robot. Syst. 2022, 105, 16. [Google Scholar] [CrossRef]
- Torrente, G.; Kaufmann, E.; Foehn, P.; Scaramuzza, D. Data-Driven MPC for Quadrotors. IEEE Robot. Autom. Lett. 2021, 6, 3769–3776. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Liu, Z.; Wang, Y. A real-time quadrotor trajectory planning framework based on B-spline and nonuniform kinodynamic search. J. Field Robot. 2021, 38, 452–475. [Google Scholar] [CrossRef]
- Heidari, H.; Saska, M. Trajectory planning of quadrotor systems for various objective functions. Robotica 2021, 39, 137–152. [Google Scholar] [CrossRef]
- Gao, F.; Wang, L.; Zhou, B.; Zhou, X.; Pan, J.; Shen, S. Teach-repeat-replan: A complete and robust system for aggressive flight in complex environments. IEEE Trans. Robot. 2020, 36, 1526–1545. [Google Scholar] [CrossRef]
- Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE (3). In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425. [Google Scholar]
- Zhong, X.; Wu, Y.; Wang, D.; Wang, Q.; Xu, C.; Gao, F. Generating Large Convex Polytopes Directly on Point Clouds. arXiv 2020, arXiv:2010.08744. [Google Scholar]
- Zinage, V.; Arul, S.H.; Manocha, D. 3D-OGSE: Online Smooth Trajectory Generation for Quadrotors using Generalized Shape Expansion in Unknown 3D Environments. arXiv 2020, arXiv:2005.13229. [Google Scholar]
- Xi, L.; Peng, Z.; Jiao, L. Trajectory generation for quadrotor while tracking a moving target in cluttered environment. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 6792–6797. [Google Scholar]
- Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett. 2019, 4, 3529–3536. [Google Scholar] [CrossRef]
- Han, L.; Gao, F.; Zhou, B.; Shen, S. Fiesta: Fast incremental euclidean distance fields for online motion planning of aerial robots. arXiv 2019, arXiv:1903.02144. [Google Scholar]
- Ding, W.; Gao, W.; Wang, K.; Shen, S. An efficient B-spline-based kinodynamic replanning framework for quadrotors. IEEE Trans. Robot. 2019, 35, 1287–1306. [Google Scholar] [CrossRef]
- Murali, V.; Spasojevic, I.; Guerra, W.; Karaman, S. Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 3936–3943. [Google Scholar]
- Abadi, A.; El Amraoui, A.; Mekki, H.; Ramdani, N. Optimal trajectory generation and robust flatness-based tracking control of quadrotors. Optim. Control Appl. Methods 2019, 40, 728–749. [Google Scholar] [CrossRef]
- Rousseau, G.; Maniu, C.S.; Tebbani, S.; Babel, M.; Martin, N. Minimum-time B-spline trajectories with corridor constraints. Application to cinematographic quadrotor flight plans. Control Eng. Pract. 2019, 89, 190–203. [Google Scholar] [CrossRef]
- Ding, W.; Gao, W.; Wang, K.; Shen, S. Trajectory replanning for quadrotors using kinodynamic search and elastic optimization. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7595–7602. [Google Scholar]
- Gao, F.; Wu, W.; Lin, Y.; Shen, S. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 344–351. [Google Scholar]
- Blochliger, F.; Fehr, M.; Dymczyk, M.; Schneider, T.; Siegwart, R. Topomap: Topological mapping and navigation based on visual slam maps. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1–9. [Google Scholar]
- Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial fusion. J. Field Robot. 2018, 35, 23–51. [Google Scholar] [CrossRef]
- Gao, F.; Lin, Y.; Shen, S. Gradient-based online safe trajectory generation for quadrotor flight in complex environments. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3681–3688. [Google Scholar]
- Usenko, V.; von Stumberg, L.; Pangercic, A.; Cremers, D. Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 215–222. [Google Scholar]
- Ling, Y.; Shen, S. Building maps for autonomous navigation using sparse visual slam features. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1374–1381. [Google Scholar]
- Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [Google Scholar] [CrossRef]
- Savin, S. An algorithm for generating convex obstacle-free regions based on stereographic projection. In Proceedings of the 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 29–30 June 2017; pp. 1–6. [Google Scholar]
- Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive topologies. Robot. Auton. Syst. 2017, 88, 142–153. [Google Scholar] [CrossRef]
- Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In Robotics Research, Proceedings of the 16th International Symposium of Robotics Research, Singapore, 16–19 December 2013; Springer: Cham, Switzerland, 2016; pp. 649–666. [Google Scholar]
- Landry, B.; Deits, R.; Florence, P.R.; Tedrake, R. Aggressive quadrotor flight through cluttered environments using mixed integer programming. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1469–1475. [Google Scholar]
- Oleynikova, H.; Burri, M.; Taylor, Z.; Nieto, J.; Siegwart, R.; Galceran, E. Continuous-time trajectory optimization for online UAV replanning. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 5332–5339. [Google Scholar]
- Allen, R.; Pavone, M. A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016; p. 1374. [Google Scholar]
- Chen, J.; Liu, T.; Shen, S. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1476–1483. [Google Scholar]
- Deits, R.; Tedrake, R. Computing large convex regions of obstacle-free space through semidefinite programming. In Algorithmic Foundations of Robotics XI, Proceedings of the Eleventh International Workshop on the Algorithmic Foundations of Robotics, Istanbul, Turkey, 3–5 August 2014; Springer: Cham, Switzerland, 2015; pp. 109–124. [Google Scholar]
- Deits, R.; Tedrake, R. Efficient mixed-integer planning for UAVs in cluttered environments. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 42–49. [Google Scholar]
- Mueller, M.W.; Hehn, M.; D’Andrea, R. A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans. Robot. 2015, 31, 1294–1310. [Google Scholar] [CrossRef]
- Krüsi, P.; Bücheler, B.; Pomerleau, F.; Schwesinger, U.; Siegwart, R.; Furgale, P. Lighting-invariant adaptive route following using iterative closest point matching. J. Field Robot. 2015, 32, 534–564. [Google Scholar] [CrossRef]
- Wright, S.J. Coordinate descent algorithms. Math. Program. 2015, 151, 3–34. [Google Scholar] [CrossRef]
- Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Pan, J.; Patil, S.; Goldberg, K.; Abbeel, P. Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 2014, 33, 1251–1270. [Google Scholar] [CrossRef]
- Pham, Q.C. A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot. 2014, 30, 1533–1540. [Google Scholar] [CrossRef]
- Pivtoraiko, M.; Mellinger, D.; Kumar, V. Incremental micro-UAV motion replanning for exploring unknown environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2452–2458. [Google Scholar]
- MacAllister, B.; Butzke, J.; Kushleyev, A.; Pandey, H.; Likhachev, M. Path planning for non-circular micro aerial vehicles in constrained environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3933–3940. [Google Scholar]
- Webb, D.J.; Van Den Berg, J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5054–5061. [Google Scholar]
- Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. Chomp: Covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [Google Scholar] [CrossRef]
- Mellinger, D.; Kushleyev, A.; Kumar, V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 477–483. [Google Scholar]
- Bhattacharya, S.; Likhachev, M.; Kumar, V. Topological constraints in search-based robot path planning. Auton. Robot. 2012, 33, 273–290. [Google Scholar] [CrossRef]
- Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar]
- Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4569–4574. [Google Scholar]
- Harabor, D.D.; Grastien, A. Online graph pruning for pathfinding on grid maps. Proc. AAAI 2011, 25, 1114–1119. [Google Scholar] [CrossRef]
- Lovi, D.; Birkbeck, N.; Cobzas, D.; Jagersand, M. Incremental free-space carving for real-time 3d reconstruction. In Proceedings of the Fifth International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Paris, France, 17–20 May 2010. [Google Scholar]
- Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 489–494. [Google Scholar]
- van den Berg, J. Extended LQR: Locally-optimal feedback control for systems with non-linear dynamics and non-quadratic cost. In Robotics Research, Proceedings of the 16th International Symposium of Robotics Research, Singapore, 16–19 December 2013; Springer: Cham, Switzerland, 2016; pp. 39–56. [Google Scholar]
- Trawny, N.; Zhou, X.S.; Zhou, K.; Roumeliotis, S.I. Interrobot transformations in 3-D. IEEE Trans. Robot. 2010, 26, 226–243. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Mann, G.K.; Gosine, R.G. Relative localization approach for combined aerial and ground robotic system. J. Intell. Robot. Syst. 2015, 77, 113–133. [Google Scholar] [CrossRef]
- Mehrez, M.W.; Mann, G.K.; Gosine, R.G. An optimization based approach for relative localization and relative tracking control in multi-robot systems. J. Intell. Robot. Syst. 2017, 85, 385–408. [Google Scholar] [CrossRef]
- Kulathunga, G.; Devitt, D.; Klimchik, A. Trajectory tracking for quadrotors: An optimization-based planning followed by controlling approach. J. Field Robot. 2022, 39, 1003–1013. [Google Scholar] [CrossRef]
- Van Nieuwstadt, M.J.; Murray, R.M. Real-time trajectory generation for differentially flat systems. Int. J. Robust Nonlinear Control 1998, 8, 995–1020. [Google Scholar] [CrossRef]
- Sferrazza, C.; Pardo, D.; Buchli, J. Numerical search for local (partial) differential flatness. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 3640–3646. [Google Scholar]
- Krishnan, S.; Rajagopalan, G.A.; Kandhasamy, S.; Shanmugavel, M. Towards Scalable Continuous-Time Trajectory Optimization for Multi-Robot Navigation. arXiv 2019, arXiv:1910.13463. [Google Scholar]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 2010, 29, 485–501. [Google Scholar] [CrossRef]
- Florence, P.; Carter, J.; Tedrake, R. Integrated perception and control at high speed: Evaluating collision avoidance maneuvers without maps. In Algorithmic Foundations of Robotics XII, Proceedings of the 12th International Workshopon the Algorithmic Foundations of Robotics, SanFrancisco, CA, USA, 18–20 December 2016; Springer: Cham, Switzerland, 2020; pp. 304–319. [Google Scholar]
- Lopez, B.T.; How, J.P. Aggressive 3-D collision avoidance for high-speed navigation. In Proceedings of the ICRA, Singapore, 29 May–3 June 2017; pp. 5759–5765. [Google Scholar]
- Gordon, W.J.; Riesenfeld, R.F. B-spline curves and surfaces. In Computer Aided Geometric Design; Elsevier: Amsterdam, The Netherlands, 1974; pp. 95–126. [Google Scholar]
- Sethian, J.A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science; Cambridge University Press: Cambridge, UK, 1999; Volume 3. [Google Scholar]
- Sava, P.; Fomel, S. 3-D traveltime computation using Huygens wavefront tracing. Geophysics 2001, 66, 883–889. [Google Scholar] [CrossRef]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bergman, K.; Ljungqvist, O.; Glad, T.; Axehill, D. An Optimization-Based Receding Horizon Trajectory Planning Algorithm. arXiv 2019, arXiv:1912.05259. [Google Scholar] [CrossRef]
- Chen, J.; Su, K.; Shen, S. Real-time safe trajectory generation for quadrotor flight in cluttered environments. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1678–1685. [Google Scholar]
- Head, J.D.; Zerner, M.C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270. [Google Scholar] [CrossRef]
- de Boor, C. Subroutine Package for Calculating with B-Splines; Report LA-4728-MS; Los Alamos Scientific Laboratory: Los Alamos, NM, USA, 1971. [Google Scholar]
- Qin, K. General matrix representations for B-splines. Vis. Comput. 2000, 16, 177–186. [Google Scholar] [CrossRef]
- Hu, J.; Ma, Z.; Niu, Y.; Tian, W.; Yao, W. Real-Time Trajectory Replanning for Quadrotor Using OctoMap and Uniform B-Splines. In Proceedings of the International Conference on Intelligent Robotics and Applications, Shenyang, China, 8–11 August 2019; Springer: Cham, Switzerland, 2019; pp. 727–741. [Google Scholar]
- Flores Contreras, M.E. Real-Time Trajectory Generation for Constrained Nonlinear Dynamical Systems Using Non-Uniform Rational B-Spline Basis Functions. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2008. [Google Scholar]
- Preiss, J.A.; Hönig, W.; Ayanian, N.; Sukhatme, G.S. Downwash-aware trajectory planning for large quadrotor teams. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 250–257. [Google Scholar]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef]
- Gao, F.; Shen, S. Online quadrotor trajectory generation and autonomous navigation on point clouds. In Proceedings of the 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016; pp. 139–146. [Google Scholar]
- Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Kala, R. Rapidly exploring random graphs: Motion planning of multiple mobile robots. Adv. Robot. 2013, 27, 1113–1122. [Google Scholar] [CrossRef]
- Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like robots. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 835–842. [Google Scholar]
- Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 802–807. [Google Scholar]
- Jacobson, D.; Mayne, D. Differential Dynamic Programming; Elsevier: New York, NY, USA, 1970. [Google Scholar]
- Theodorou, E.; Krishnamurthy, D.; Todorov, E. From information theoretic dualities to path integral and Kullback–Leibler control: Continuous and discrete time formulations. In Proceedings of the Sixteenth Yale Workshop on Adaptive and Learning Systems, New Haven, CT, USA, 5–7 June 2013. [Google Scholar]
- Lewis, F.L.; Syrmos, V.L. Optimal Control; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Li, W.; Todorov, E. Iterative linear quadratic regulator design for nonlinear biological movement systems. In Proceedings of the ICINCO (1), Setúbal, Portugal, 25–28 August 2004; pp. 222–229. [Google Scholar]
- van den Berg, J. Iterated LQR smoothing for locally-optimal feedback control of systems with non-linear dynamics and non-quadratic cost. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 1912–1918. [Google Scholar]
- Sun, W.; Van Den Berg, J.; Alterovitz, R. Stochastic extended LQR: Optimization-based motion planning under uncertainty. In Algorithmic Foundations of Robotics XI, Proceedings of the Eleventh International Workshop on the Algorithmic Foundations of Robotics, Istanbul, Turkey, 3–5 August 2014; Springer: Cham, Switzerland, 2015; pp. 609–626. [Google Scholar]
- Van Den Berg, J.; Wilkie, D.; Guy, S.J.; Niethammer, M.; Manocha, D. LQG-obstacles: Feedback control with collision avoidance for mobile robots with motion and sensing uncertainty. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 346–353. [Google Scholar]
- Todorov, E. General duality between optimal control and estimation. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 4286–4292. [Google Scholar]
- Likhachev, M.; Gordon, G.J.; Thrun, S. ARA*: Anytime A* with provable bounds on sub-optimality. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–13 December 2003; pp. 767–774. [Google Scholar]
- Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef]
- Perez, A.; Platt, R.; Konidaris, G.; Kaelbling, L.; Lozano-Perez, T. LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2537–2542. [Google Scholar]
- Kulathunga, G.; Devitt, D.; Fedorenko, R.; Klimchik, A. Path planning followed by kinodynamic smoothing for multirotor aerial vehicles (MAVs). Russ. J. Nonlinear Dyn. 2021, 17, 491–505. [Google Scholar] [CrossRef]
- Pacelli, V.; Arslan, O.; Koditschek, D.E. Integration of local geometry and metric information in sampling-based motion planning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3061–3068. [Google Scholar]
- Mason, M.T.; Salisbury, J.K., Jr. Robot Hands and the Mechanics of Manipulation; The MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Liu, S.; Atanasov, N.; Mohta, K.; Kumar, V. Search-based motion planning for quadrotors using linear quadratic minimum time control. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2872–2879. [Google Scholar]
- Ames, A.D.; Galloway, K.; Sreenath, K.; Grizzle, J.W. Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 2014, 59, 876–891. [Google Scholar] [CrossRef]
- Wu, G.; Sreenath, K. Safety-critical and constrained geometric control synthesis using control Lyapunov and control barrier functions for systems evolving on manifolds. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 2038–2044. [Google Scholar]
- Ames, A.D.; Xu, X.; Grizzle, J.W.; Tabuada, P. Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Autom. Control 2016, 62, 3861–3876. [Google Scholar] [CrossRef]
- Kolmanovsky, I.; Garone, E.; Di Cairano, S. Reference and command governors: A tutorial on their theory and automotive applications. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 226–241. [Google Scholar]
- Garone, E.; Nicotra, M.M. Explicit reference governor for constrained nonlinear systems. IEEE Trans. Autom. Control 2015, 61, 1379–1384. [Google Scholar] [CrossRef]
- Arslan, O.; Koditschek, D.E. Smooth extensions of feedback motion planners via reference governors. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4414–4421. [Google Scholar]
- Li, Z.; Arslan, O.; Atanasov, N. Fast and Safe Path-Following Control using a State-Dependent Directional Metric. arXiv 2020, arXiv:2002.02038. [Google Scholar]
- Aoyama, Y.; Boutselis, G.; Patel, A.; Theodorou, E.A. Constrained Differential Dynamic Programming Revisited. arXiv 2020, arXiv:2005.00985. [Google Scholar]
- Liu, C.; Pan, J.; Chang, Y. PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: Experimental studies. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 10845–10850. [Google Scholar]
- Cowling, I.D.; Whidborne, J.F.; Cooke, A.K. Optimal trajectory planning and LQR control for a quadrotor UAV. In Proceedings of the International Conference on Control, Glasgow, UK, 30 August–1 September 2006. [Google Scholar]
- Bangura, M.; Mahony, R. Real-time Model Predictive Control for Quadrotors. IFAC Proc. Vol. 2014, 47, 11773–11780. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Fujii, H.A. Real-time optimization algorithm for nonlinear receding-horizon control. Automatica 1997, 33, 1147–1154. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, X.; Xu, C.; Gao, F. CMPCC: Corridor-based Model Predictive Contouring Control for Aggressive Drone Flight. arXiv 2020, arXiv:2007.03271. [Google Scholar]
- Deng, H.; Ohtsuka, T. A parallel Newton-type method for nonlinear model predictive control. Automatica 2019, 109, 108560. [Google Scholar] [CrossRef]
- Mohamed, I.S.; Allibert, G.; Martinet, P. Model Predictive Path Integral Control Framework for Partially Observable Navigation: A Quadrotor Case Study. arXiv 2020, arXiv:2004.08641. [Google Scholar]
- Olivares-Mendez, M.A.; Campoy, P.; Mellado-Bataller, I.; Mejias, L. See-and-avoid quadcopter using fuzzy control optimized by cross-entropy. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012; pp. 1–7. [Google Scholar]
- Gao, F.; Wu, W.; Gao, W.; Shen, S. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments. J. Field Robot. 2019, 36, 710–733. [Google Scholar] [CrossRef]
- Tordesillas, J.; Lopez, B.T.; Everett, M.; How, J.P. Faster: Fast and safe trajectory planner for flights in unknown environments. arXiv 2020, arXiv:2001.04420. [Google Scholar]
- Quinlan, S. Real-Time Modification of Collision-Free Paths; Number 1537; Stanford University: Stanford, CA, USA, 1994. [Google Scholar]
- Zhou, B.; Gao, F.; Pan, J.; Shen, S. Robust real-time UAV replanning using guided gradient-based optimization and topological paths. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1208–1214. [Google Scholar]
- Powell, M.J. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives; Cambridge NA Report NA2009/06; University of Cambridge: Cambridge, UK, 2009; pp. 26–46. [Google Scholar]
- Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Houska, B.; Ferreau, H.J.; Diehl, M. ACADO toolkit—An open-source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 2011, 32, 298–312. [Google Scholar] [CrossRef]
- Kraft, D. A Software Package for Sequential Quadratic Programming; Forschungsbericht; Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (DFVLR): Cologne, Germany, 1988. [Google Scholar]
- Parikh, N.; Boyd, S. Block splitting for distributed optimization. Math. Program. Comput. 2014, 6, 77–102. [Google Scholar] [CrossRef]
- Fougner, C.; Boyd, S. Parameter selection and preconditioning for a graph form solver. In Emerging Applications of Control and Systems Theory; Springer: Cham, Switzerland, 2018; pp. 41–61. [Google Scholar]
- Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 2002, 12, 555–573. [Google Scholar] [CrossRef]
- Liu, X.; Wiersma, R.D. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems. PLoS ONE 2019, 14, e0210385. [Google Scholar] [CrossRef]
- Foehn, P.; Falanga, D.; Kuppuswamy, N.; Tedrake, R.; Scaramuzza, D. Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. In Proceedings of the RSS 2017: Robotics: Science and Systems 2017, Cambridge, MA, USA, 12–16 July 2017. [Google Scholar]
- Geisert, M.; Mansard, N. Trajectory generation for quadrotor based systems using numerical optimal control. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2958–2964. [Google Scholar]
- Shen, S.; Michael, N.; Kumar, V. Stochastic differential equation-based exploration algorithm for autonomous indoor 3D exploration with a micro-aerial vehicle. Int. J. Robot. Res. 2012, 31, 1431–1444. [Google Scholar] [CrossRef]
- Johnson, S.G. The NLopt Nonlinear-Optimization Package. 2014. Available online: http://abinitio.mit.edu/nlopt (accessed on 30 October 2023).
- Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. EGO-Planner: An ESDF-free Gradient-based Local Planner for Quadrotors. IEEE Robot. Autom. Lett. 2020, 6, 478–485. [Google Scholar] [CrossRef]
- Dembo, R.S.; Steihaug, T. Truncated Newton algorithms for large-scale optimization. Math. Program. 1983, 26, 190–212. [Google Scholar] [CrossRef]
- Andersen, E.D.; Andersen, K.D. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization; Springer: New York, NY, USA, 2000; pp. 197–232. [Google Scholar]
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2018. [Google Scholar]
- Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 2020, 12, 637–672. [Google Scholar] [CrossRef]
- Kamel, M.; Stastny, T.; Alexis, K.; Siegwart, R. Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system. In Robot Operating System (ROS); Springer: Cham, Switzerland, 2017; pp. 3–39. [Google Scholar]
- Gertz, E.M.; Wright, S.J. Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 2003, 29, 58–81. [Google Scholar] [CrossRef]
- Tordesillas, J.; How, J.P. MADER: Trajectory Planner in Multi-Agent and Dynamic Environments. arXiv 2020, arXiv:2010.11061. [Google Scholar]
- Tordesillas, J.; How, J.P. MINVO basis: Finding simplexes with minimum volume enclosing polynomial curves. arXiv 2020, arXiv:2010.10726. [Google Scholar] [CrossRef]
- Conn, A.R.; Gould, N.I.; Toint, P. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 1991, 28, 545–572. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Li, P.; Wang, Y. Real-time Trajectory Generation for Quadrotors using B-spline based Non-uniform Kinodynamic Search. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 1133–1138. [Google Scholar]
- Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
- Biegler, L.T.; Zavala, V.M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 2009, 33, 575–582. [Google Scholar] [CrossRef]
- Kulathunga, G.; Hamed, H.; Klimchik, A. Residual Dynamics Learning for Trajectory Tracking for Multi-rotor Aerial Vehicles. arXiv 2023, arXiv:2305.15791. [Google Scholar]
Type | Velocity | Acceleration | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Std | Min | Max | Mean | Std | Min | Max | |
Poly-traj, d: 8, mc: 2 | 0.0058 | 1.0154 | −1.4545 | 3.9179 | 0.0056 | 0.9051 | −2.835 | 3.6449 |
Poly-traj, d: 8, mc: 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Poly-traj, d: 6, mc: 4 | 0.006 | 1.0708 | −1.7716 | 3.7864 | 0.0043 | 0.9307 | −2.7987 | 3.6032 |
Poly-traj, d: 8, mc: 4 | 0.0059 | 1.0299 | −1.4728 | 3.934 | 0.0053 | 0.9131 | −2.9157 | 3.5214 |
Poly-traj, d: 10, mc: 4 | 0.0058 | 1.0057 | −1.4428 | 3.9213 | 0.0052 | 0.8918 | −2.7541 | 3.631 |
Minimum-snap, d: 8, mc: 2 | 0.1258 | 1.2154 | −1.4345 | 3.1259 | 0.0676 | 0.1259 | −2.2874 | 3.3278 |
Minimum-snap, d: 8, mc: 6 | 0.0045 | 0.0094 | −0.07 | 0.019 | 0.09 | 0.0097 | −0.0098 | 0.0014 |
Minimum-snap, d: 6, mc: 4 | 0.0689 | 1.0009 | −1.3416 | 3.2388 | 0.0012 | 0.4584 | −2.3189 | 3.2185 |
Minimum-snap, d: 8, mc: 4 | 0.0015 | 1.0412 | −1.3215 | 3.7543 | 0.0075 | 0.8763 | −2.5487 | 3.3215 |
Minimum-snap, d: 10, mc: 4 | 0.0036 | 1.0006 | −1.3428 | 3.7832 | 0.0099 | 0.4378 | −2.4548 | 3.4893 |
CHOMP, pd: 3 | 0.0068 | 0.6421 | −0.9522 | 1.7255 | 0.0045 | 0.3876 | −1.131 | 1.476 |
CHOMP, pd: 5 | 0.0065 | 0.644 | −0.9634 | 1.7161 | 0.0044 | 0.3909 | −1.1082 | 1.4418 |
CHOMP, pd: 7 | 0.0064 | 0.6443 | −0.966 | 1.7105 | 0.0043 | 0.3916 | −1.0951 | 1.4205 |
Type | Jerk | Snap | ||||||
mean | std | min | max | mean | std | min | max | |
Poly-traj, d: 8, mc: 2 | 0.007 | 1.2544 | −4.8056 | 3.9318 | −0.0151 | 2.3178 | −9.8029 | 6.9483 |
Poly-traj, d: 8, mc: 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Poly-traj, d: 6, mc: 4 | 0.0117 | 1.568 | −5.5746 | 5.7423 | −0.1288 | 3.5271 | −13.4562 | 10.2578 |
Poly-traj, d: 8, mc: 4 | −0.0021 | 1.2562 | −4.7192 | 3.7562 | 0.0131 | 1.9593 | −7.7131 | 6.0049 |
Poly-traj, d: 10, mc: 4 | 0.0074 | 1.3399 | −5.5769 | 4.409 | −0.0504 | 3.1073 | −12.3429 | 9.9933 |
Minimum-snap, d: 8, mc: 2 | 0.0006 | 1.1125 | −4.3413 | 3.5153 | −0.0042 | 2.1383 | −9.0056 | 6.3418 |
Minimum-snap, d: 8, mc: 6 | 0.0005 | 0.0004 | −0.0007 | 0.0089 | 0.0005 | 0.004 | −0.0008 | 0.0009 |
Minimum-snap, d: 6, mc: 4 | 0.01 | 1.3456 | −5.2167 | 5.321 | −0.0093 | 3.214 | −12.5124 | 9.2134 |
Minimum-snap, d: 8, mc: 4 | −0.001 | 1.1321 | −3.7192 | 3.3217 | 0.0093 | 1.2145 | −5.6527 | 4.7854 |
Minimum-snap, d: 10, mc: 4 | 0.0009 | 1.2145 | −3.9987 | 3.9983 | −0.0067 | 2.8731 | −10.7653 | 8.8416 |
CHOMP, pd: 3 | 0.0021 | 0.3643 | −1.2594 | 1.1584 | −0.0014 | 0.4239 | −1.8326 | 1.5425 |
CHOMP, pd: 5 | 0.0023 | 0.3628 | −1.2553 | 1.1639 | 0.0005 | 0.4241 | −1.8526 | 1.6243 |
CHOMP, pd: 7 | 0.0022 | 0.3614 | −1.2732 | 1.1769 | 0.0021 | 0.4247 | −1.7462 | 1.5906 |
Algorithm | Motion Model | Gradient Estimator | ||
---|---|---|---|---|
Linear | Nonlinear | Hamiltonian | Gradient | |
Differential Dynamic Programming (DDP) [109] | ✗ | ✓ | ✗ | ✓ |
Linear Quadratic Regulator (LQR) [110] | ✓ | ✗ | ✗ | ✗ |
Iterative LQR (iLQR) [111] | ✗ | ✓ | ✗ | ✓ |
Linear Model Predictive Control (MPC) [112] | ✓ | ✗ | ✗ | ✗ |
Nonlinear Model Predictive Control (NMPC) [62] | ✓ | ✓ | ✓ | ✗ |
Constrained Nonlinear Model Predictive Control CGMRES (NMPC-CGMRES) [113] | ✗ | ✓ | ✓ | ✗ |
Corridor-based Model Predictive Contouring Control (CMPCC) [114] | ✓ | ✗ | ✗ | ✗ |
Constrained Nonlinear Model Predictive Control Newton (NMPC-Newton) [115] | ✗ | ✓ | ✗ | ✗ |
Model Preidictive Path Integral Control (MPPI) [116] | ✓ | ✓ | ✗ | ✗ |
Cross Entropy Method (CEM) [117] | ✓ | ✓ | ✗ | ✗ |
Approach | Dynamics Model (Exact | Empirical Differential Flatness (DF)) | Intermediate Waypoint Selection | Initial Trajectory Generation | Continuous Trajectory Refinement and Solver | Free Space Extraction | Receding Horizon Planning or Controlling |
---|---|---|---|---|---|---|
A replanner [121] | DF | Sampling-based topological search | PGO-based B-splines | GTO | ESDF | - |
A replanner [25] | DF | Kinodynamic-based search | B-splines | EO using QCQP | ESDF | - |
A replanner [101] | DF | Kinodynamic-based search | Linear quadratic minimum time | Unconstrained QP | [132] | RHC |
A local replanner [37] | DF | Informed-RRT* | Continuous time polynomial | BFGS | ESDF | - |
Teach-repeat-replan [14] | DF | - | Minimum-jerk | Elastic band optimization | Convex Cluster | - |
Fast planner [19] | DF | A* kinodynamic search | B-splines | NLopt [133] | ESDF | GTC |
Areplanner [21] | DF | B-spline kinodynamic search | EO | ~QCQP | TSDF | - |
Chomp [50] | DF | - | CHOMP | Functional gradient [120] | ESDF | CHOMP |
EGO-Planner [134] | DF | A* | Uniform B-spline | T-NEWTON [135] | ESDF | - |
A replanner [26] | DF | Fast marching-based search | Bernstein polynomial | Mosek [136] | TSDF | - |
A safe trajectory generator [82] | DF | RRG combined with A* | Piece-wise polynomials | QCQP | KD-tree | GTC |
ILQR [91] | Exact | line search | Iterated LQR Smoothing | Iterated LQR Smoothing | - | - |
Monocular visual-inertial fusion [28] | Exact | A* | VINS | Gradient-based | TSDF | GTC |
A replanner [78] | DF | RRT* | Uniform-Bspline | MMA and BFGS | OctoMap | GTC |
Safe flight corridors [32] | DF | JPS | Minimum-span | Constrained QP | SFC | RHC |
SDDM [108] | Empirical | Piece-wise-linear path | SDDM | SDDM | Constrained QP | - |
Faster [119] | DF | JPS | Cubic Bézier curve | MIQP using Gurobi [137] | SFC | - |
CMPCC [114] | Empirical | - | CMPCC | OSQP [138] | SFC | RHC |
Relative trajectory tracking control [61] | Empirical | - | NMPC | ACADO [124] | - | MHE |
A trajectory tracker [139] | Empirical | - | NMPC | SQP | - | RHC |
A replanner [74] | DF | A* | Multi-segment polynomial | OOQP [140] | OctoMap | GTC |
A replanner [35] | Exact | RRT* | Minimum-span | Unconstrained QP | OctoMap | GTC |
MADER [141] | DF | MINVO basis [142] | Uniform B-spline | Augmented Lagrangian [143] | Outer polyhedral | - |
SOS programming [41] | DF | Piece-wise linear path | Piece-wise-polynomial | MIQP using Mosek | IRIS | - |
A replanner [144] | DF | Nonuniform kinodynamic search | Uniform B-spline | Constrained QP | ESDF | RHC |
A trajectory tracker [62] | Empirical | Uniform B-spline | NMPC | CasADi [145] with Ipopt [146] | ESDF | PID |
Approach | Specific Features | Performance Indicates |
---|---|---|
A replanner [121] | A path-guided optimization (PGO) approach to address infeasible local minima problems, not limited to a specific use | Computation time (≈15 ms), perform aggressive maneuvers |
A replanner [25] | A dynamically feasible time parameterized trajectory generation to overcome the limitation of the greedy search, not limited to a specific use | Computation time (≈30 ms), limited maneuvering capabilities |
A replanner [101] | Searches for smooth, minimum-time trajectories using a set of short-duration motion primitives, not limited to a specific use | Computation time (≈15 ms), limited maneuvering capabilities |
Teach-repeat-replan [14] | Generate safe local trajectories (smooth, safe, and kinodynamically feasible) to avoid moving obstacles, infrastructure inspection, aerial transportation, and search-and-rescue | Computation time (≈15 ms), perform aggressive maneuvers |
Fast planner [19] | Kinodynamic feasible and minimum-time trajectory generation in the discretized control space, not limited to a specific use | Computation time (≈5 ms), perform aggressive maneuvers |
EGO-Planner [134] | A Euclidean signed distance field (ESDF)-free gradient-based planner, not limited to a specific use | Computation time (≈2 ms), extreme maneuvering capabilities |
ILQR [91] | LQR smoothing to compute a locally optimal feedback control policy, can work with nonlinear dynamics and nonquadratic cost, limited to a specific use | Computation time (≈3 s), limited maneuvering capabilities |
Monocular visual-inertial fusion [28] | A monocular visual-inertial navigation system (VINS), consisting only an inertial measurement unit (IMU) and a camera. VINS supports self-extrinsic calibration | Computation time (≈30 ms), limited maneuvering capabilities |
Safe flight corridors (SFC) [32] | The SFC is a set of overlapping convex polyhedra that represent free space and provide a connected path for the robot to reach its goal. | Computation time (≈100 ms), extreme maneuvering capabilities |
SDDM [108] | A control policy for MAVs systems that uses ellipsoidal trajectory bounds defined by a quadratic state-dependent distance metric. SDDM behavior is adapted to the geometry of the local environment. | Computation time (≈100 ms), limited maneuvering capabilities |
FASTER [119] | FASTER guarantees safety without compromising speed by having a safe backup trajectory, and MIQP is used to allocate trajectory intervals | Computation time (≈15 ms), extreme maneuvering capabilities |
MADER [141] | MADER uses the MINVO basis to generate trajectories through free space more effectively than Bernstein or B-Spline bases in obstacle-dense environments. | Computation time (≈10 ms), extreme maneuvering capabilities |
SOS programming [41] | A sums-of-squares (SOS) programming approach that ensures the entire piece-wise-polynomial trajectory is collision-free using convex constraints. | Computation time (≈60 ms), limited maneuvering capabilities |
A trajectory tracker [62] | Nonlinear model predictive control (NMPC) with multiple shooting is used to predict the optimal control policy at each iteration. | Computation time (≈60 ms), limited maneuvering capabilities |
Residual dynamics [147] | A learning-based technique using Sparse Gaussian Process Regression is proposed to reduce the residual dynamics between high-level planning and low-level controlling | Computation time (≈20 ms), extreme maneuvering capabilities |
A replanner [8] | A continuous optimization-based method for refining the reference trajectory to move it out of obstacle-occupied space in the global phase. | Computation time (≈15 ms), extreme maneuvering capabilities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulathunga, G.; Klimchik, A. Survey on Motion Planning for Multirotor Aerial Vehicles in Plan-Based Control Paradigm. Remote Sens. 2023, 15, 5237. https://doi.org/10.3390/rs15215237
Kulathunga G, Klimchik A. Survey on Motion Planning for Multirotor Aerial Vehicles in Plan-Based Control Paradigm. Remote Sensing. 2023; 15(21):5237. https://doi.org/10.3390/rs15215237
Chicago/Turabian StyleKulathunga, Geesara, and Alexandr Klimchik. 2023. "Survey on Motion Planning for Multirotor Aerial Vehicles in Plan-Based Control Paradigm" Remote Sensing 15, no. 21: 5237. https://doi.org/10.3390/rs15215237
APA StyleKulathunga, G., & Klimchik, A. (2023). Survey on Motion Planning for Multirotor Aerial Vehicles in Plan-Based Control Paradigm. Remote Sensing, 15(21), 5237. https://doi.org/10.3390/rs15215237