Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments
Abstract
:1. Introduction
- Develop a framework to generate a MODIS CIcyano time series that is consistent with MERIS/OLCI CIcyano and can be used to fill the four-year gap in the MERIS/OLCI CIcyano time series in Lake Okeechobee,
- Develop a method that can address the MODIS Red-NIR saturation issue over bright targets and minimizes the spatial data loss in the CIcyano products, and
- Independently validate the MODIS-generated CI in other lakes proving the replicability and geographic transferability of the model, without retraining, for broader application.
2. Materials and Methods
2.1. Satellite Data
2.1.1. MERIS/OLCI CIcyano Data
2.1.2. MODIS Terra Data
2.2. Matchup Dataset
2.3. CyanNet Framework
- Logistic Regression classifier
- 2.
- Fully connected Deep Neural Network (DNN)
2.4. Model Evaluation
2.4.1. Model Training and Validation
2.4.2. Evaluation of Model with Composites
2.4.3. Model Evaluation for Geographic Transferability
2.4.4. Evaluation Metrics
3. Results
3.1. CyanNet Validation with 10-Day Composites
3.2. Validation in Lake Erie
3.3. Continuous and Consistent Bloom Time Series in Lake Okeechobee
- A qualitative match-up between the observed and modeled time series, which is often used to show if the predictions are temporally consistent and represent the critical bloom phenological events.
- Quantitative validation of the retrievals from 10-day composites through scatter plots with error metrics.
- Quantitative validation of annual bloom magnitudes or annual mean Chl-a concentrations.
4. Discussion
4.1. Sources of Differences and Uncertainties
- The lower sensitivity of CyanNet in the lower end (<2 × 10−4 CIcyano).
- The difference in availability of valid data in the 10-day composites.
- Mismatch due to pixel flagging as valid/invalid data (clouds, sun glint, land adjacency) as well as the cyan flag, which is part of the CIcyano algorithm.
4.2. CyanNet’s Novel Contribution and Its Broader Application
- Cyanobacteria confirmation: MERIS/OLCI CIcyano uses a cyanobacteria confirmation flag derived from spectral absorption features of phycocyanin, a characteristic photosynthetic pigment in cyanobacteria. MODIS CI does not use the flag as the 620 nm band is missing in MODIS [19]. However, CyanNet CIcyano fills that gap by applying a cyan/non-cyan flag to the predicted CI values from the DNN.
- CIcyano retrieval over Red/NIR band saturated areas: One of the limitations of MODIS CI is that the MODIS Red/NIR bands, especially the 678 nm band used in MODIS CI, saturate over bright targets such as intense algal blooms with a surface accumulation of cyanobacteria biomass due to high sensitivity and low saturation threshold [15,16,21]. Moradi (2014) stated that the MODIS CI could serve as an equivalent product of MERIS CI over cyanobacterial patches with ≤ 106 cell L−1 in the southern Caspian Sea [16]. CyanNet reduces that data loss by using the CyanNet-S to retrieve MODIS CIcyano, with the MODIS bands that tend not to saturate over bright targets.
- Consistency among CIcyano from different sensors: MODIS CI, calculated from the spectral shape (Equation (1) with closest MODIS bands) [16,39], shows similar spatial bloom patterns as in MERIS CI. However, because this requires substituting the MODIS 748 nm band for the MERIS/OLCI 709 nm, the magnitude of CI differs significantly between the two sensors. Therefore, MODIS CI requires further calibration to make it consistent with MERIS/OLCI CIcyano [16,23]. However, intercalibration of MODIS CI and MERIS/OLCI CI can sometimes be challenging with a linear-regression approach as non-linear trends are possible in the low end. CyanNet addresses that challenge and models MODIS CIcyano in the entire range consistent with MERIS/OLCI CIcyano.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stumpf, R.P.; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE 2012, 7, e42444. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, B.A.; Urquhart, E.; Coffer, M.; Salls, W.; Stumpf, R.P.; Loftin, K.A.; Werdell, P.J. Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales. Ecol. Indic. 2022, 140, 108990. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T.; Soomets, T.; Toming, K.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Assessing the Baltic Sea Water Quality with Sentinel-3 OLCI Imagery. In Proceedings of the 2018 IEEE/OES Baltic International Symposium (BALTIC), Klaipeda, Lithuania, 12–15 June 2018; pp. 1–6. [Google Scholar]
- William Matthews, M. Near-term forecasting of cyanobacteria and harmful algal blooms in lakes using simple univariate methods with satellite remote sensing data. Inland Waters 2022, 13, 62–73. [Google Scholar] [CrossRef]
- Binding, C.; Pizzolato, L.; Zeng, C. EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes. Ecol. Indic. 2021, 121, 106999. [Google Scholar] [CrossRef]
- Coffer, M.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Salls, W.B. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecol. Indic. 2020, 111, 105976. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J. Recent changes in cyanobacteria algal bloom magnitude in large lakes across the contiguous United States. Sci. Total Environ. 2023, 897, 165253. [Google Scholar] [CrossRef] [PubMed]
- Lunetta, R.S.; Schaeffer, B.A.; Stumpf, R.P.; Keith, D.; Jacobs, S.A.; Murphy, M.S. Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sens. Environ. 2015, 157, 24–34. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Lee, Z.; Tucker, C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ. 2013, 133, 141–151. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Davis, T.W.; Wynne, T.T.; Graham, J.L.; Loftin, K.A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 2016, 54, 160–173. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Warner, R.A.; Tester, P.A.; Dyble, J.; Fahnenstiel, G.L. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int. J. Remote Sens. 2008, 29, 3665–3672. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Robertson, L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Briggs, T.O. Comparing MODIS and MERIS spectral shapes for cyanobacterial bloom detection. Int. J. Remote Sens. 2013, 34, 6668–6678. [Google Scholar] [CrossRef]
- Moradi, M. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Mar. Pollut. Bull. 2014, 87, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, J.P.; Barnes, B.B.; Hu, C.; Corcoran, A.A.; Hubbard, K.A.; Muhlbach, E.; Sharp, W.C.; Brand, L.E.; Kelble, C.R. Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data. Remote Sens. Environ. 2019, 231, 111227. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.; Shum, C.; Liang, S.; Lee, J. Satellite remote sensing of drinking water intakes in Lake Erie for cyanobacteria population using two MODIS-based indicators as a potential tool for toxin tracking. Front. Mar. Sci. 2017, 4, 124. [Google Scholar] [CrossRef]
- Konik, M.; Bradtke, K.; Stoń-Egiert, J.; Soja-Woźniak, M.; Śliwińska-Wilczewska, S.; Darecki, M. Cyanobacteria Index as a Tool for the Satellite Detection of Cyanobacteria Blooms in the Baltic Sea. Remote Sens. 2023, 15, 1601. [Google Scholar] [CrossRef]
- Simis, S.G.; Peters, S.W.; Gons, H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean 2012, 117, C01011. [Google Scholar] [CrossRef]
- Land, P.E.; Shutler, J.D.; Smyth, T.J. Correction of sensor saturation effects in MODIS oceanic particulate inorganic carbon. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1466–1474. [Google Scholar] [CrossRef]
- Wynne, T.T.; Mishra, S.; Meredith, A.; Litaker, R.W.; Stumpf, R.P. Intercalibration of MERIS, MODIS, and OLCI Satellite Imagers for Construction of Past, Present, and Future Cyanobacterial Biomass Time Series. Remote Sens. 2021, 13, 2305. [Google Scholar] [CrossRef]
- Zeng, C.; Binding, C.E. Consistent multi-mission measures of inland water algal bloom spatial extent using MERIS, MODIS and OLCI. Remote Sens. 2021, 13, 3349. [Google Scholar] [CrossRef]
- Wynne, T.; Meredith, A.; Briggs, T.; Litaker, W.; Stumpf, R. Harmful Algal Bloom Forecasting Branch Ocean Color Satellite Imagery Processing Guidelines. NOAA Tech. Memo. NOS NCCOS 2018, 252, 48. [Google Scholar] [CrossRef]
- Urquhart, E.A.; Schaeffer, B.A. Envisat MERIS and Sentinel-3 OLCI satellite lake biophysical water quality flag dataset for the contiguous United States. Data Brief 2020, 28, 104826. [Google Scholar] [CrossRef]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing. Sci. Rep. 2019, 9, 18310. [Google Scholar] [CrossRef]
- Whitman, P.; Schaeffer, B.; Salls, W.; Coffer, M.; Mishra, S.; Seegers, B.; Loftin, K.; Stumpf, R.; Werdell, P.J. A validation of satellite derived cyanobacteria detections with state reported events and recreation advisories across US lakes. Harmful Algae 2022, 115, 102191. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Cao, C. Terra and Aqua MODIS inter-comparison of three reflective solar bands using AVHRR onboard the NOAA-KLM satellites. Int. J. Remote Sens. 2008, 29, 1997–2010. [Google Scholar] [CrossRef]
- Haut, J.; Paoletti, M.; Paz-Gallardo, A.; Plaza, J.; Plaza, A.; Vigo-Aguiar, J. Cloud implementation of logistic regression for hyperspectral image classification. IEEE J. Miniaturization Air Space Syst. 2020, 1, 1063–2321. [Google Scholar]
- Stumpf, R.P.; Johnson, L.T.; Wynne, T.T.; Baker, D.B. Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J. Great Lakes Res. 2016, 42, 1174–1183. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Fahnenstiel, G.L.; Dyble, J.; Schwab, D.J.; Joshi, S.J. Evolution of a cyanobacterial bloom forecast system in western Lake Erie: Development and initial evaluation. J. Great Lakes Res. 2013, 39, 90–99. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Dyble, J. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr. 2010, 55, 2025–2036. [Google Scholar] [CrossRef]
- Seegers, B.N.; Werdell, P.J.; Vandermeulen, R.A.; Salls, W.; Stumpf, R.P.; Schaeffer, B.A.; Owens, T.J.; Bailey, S.W.; Scott, J.P.; Loftin, K.A. Satellites for long-term monitoring of inland US lakes: The MERIS time series and application for chlorophyll-a. Remote Sens. Environ. 2021, 266, 112685. [Google Scholar] [CrossRef]
- Egan, J.P. Signal Detection Theory and ROC Analysis; Academic Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Haibo, H.; Yunqian, M. Imbalanced learning: Foundations, algorithms, and applications. Wiley-IEEE Press 2013, 1, 12. [Google Scholar]
- Wu, T.; Qin, B.; Brookes, J.D.; Shi, K.; Zhu, G.; Zhu, M.; Yan, W.; Wang, Z. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci. Total Environ. 2015, 518, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Wynne, T.T.; Stumpf, R.P.; Litaker, R.W.; Hood, R.R. Cyanobacterial bloom phenology in Saginaw Bay from MODIS and a comparative look with western Lake Erie. Harmful Algae 2021, 103, 101999. [Google Scholar] [CrossRef]
- Binding, C.; Zeng, C.; Pizzolato, L.; Booth, C.; Valipour, R.; Fong, P.; Zastepa, A.; Pascoe, T. Reporting on the status, trends, and drivers of algal blooms on Lake of the Woods using satellite-derived bloom indices (2002–2021). J. Great Lakes Res. 2023, 49, 32–43. [Google Scholar] [CrossRef]
Band Center Wavelength (nm) | |
---|---|
MODIS | MERIS/OLCI |
412.5 | 412.5 |
443 | 442.5 |
469 | - |
488 * | 490 |
531 * | 510 |
551 | 560 |
555 * | 560 |
- | 620 |
645 | - |
667 * | 665 |
- | 673.75 |
678 * | 681.25 |
- | 708.75 |
748 * | 753.75 |
858.5 | - |
869.5 * | 865 |
Spectral Feature | Formulation | LR (Standard) (n = 17) | DNN (Standard) (n = 12) | LR-S (n = 13) | DNN-S (n = 12) |
---|---|---|---|---|---|
✔ | ✔ | ✔ | |||
✔ | ✔ | ✔ | |||
✔ | ✔ | ✔ | |||
✔ | ✔ | ✔ | ✔ | ||
✔ | ✔ | ✔ | ✔ | ||
✔ | ✔ | ✔ | ✔ | ||
✔ | ✔ | ✔ | ✔ | ||
✔ | ✔ | ||||
✔ | ✔ | ||||
✔ | ✔ | ||||
✔ | ✔ | ✔ | ✔ | ||
✔ | ✔ | ||||
SS with 488 to 645 nm baseline | ✔ | ✔ | ✔ | ✔ | |
SS with 555 to 859 nm baseline | ✔ | ✔ | ✔ | ✔ | |
SS with 665 to748 nm baseline | ✔ | ||||
SS with 645 to 1240 nm baseline | ✔ | ✔ | ✔ | ✔ | |
✔ | ✔ | ||||
Green-red difference (GRD) | ✔ | ✔ |
Model Parameter | Value |
---|---|
Model structure (layers) | 5 |
Nodes (first/hidden/hidden/hidden/output nodes) | 25/25/25/12/1 |
Input features scaling | Min-Max scaling |
Output (CIcyano) scaling | None |
Activation function (input and hidden layers/output layer) | ReLU */Linear |
Loss function | Mean Squared Error (MSE) |
Model | Score | Metric |
---|---|---|
LR | 0.91 | AUC ROC |
LR-S | 0.85 | AUC ROC |
DNN | 1.27 (0.95) | MedAD (Median bias) |
DNN-S | 1.41 (1.003) | MedAD (Median bias) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.; Stumpf, R.P.; Meredith, A. Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments. Remote Sens. 2023, 15, 5291. https://doi.org/10.3390/rs15225291
Mishra S, Stumpf RP, Meredith A. Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments. Remote Sensing. 2023; 15(22):5291. https://doi.org/10.3390/rs15225291
Chicago/Turabian StyleMishra, Sachidananda, Richard P. Stumpf, and Andrew Meredith. 2023. "Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments" Remote Sensing 15, no. 22: 5291. https://doi.org/10.3390/rs15225291
APA StyleMishra, S., Stumpf, R. P., & Meredith, A. (2023). Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments. Remote Sensing, 15(22), 5291. https://doi.org/10.3390/rs15225291