Impact of Satellite-Derived Land Cover Resolution Using Machine Learning and Hydrological Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification Algorithms
2.2. Classification Assessment
- P_Accuracy = the producer’s accuracy column shows false negatives, or errors of omission. The producer’s accuracy indicates how accurately the classification results meet the expectation of the creator.
- U_Accuracy = the user’s accuracy column shows false positives, or errors of commission, in which pixels are incorrectly classified as a known class when they should have been classified as something else.
- κ = Kappa Coefficient.
- C = Column Total.
- D = Row Total.
2.3. Hydrologic Model
2.4. Temporal Data
2.5. Application Framework
3. Results
3.1. Land Cover Classification
3.2. Accuracy Assessment
3.3. Hydrologic Simulations
3.4. Sensitivity Analysis
4. Discussion and Conclusions
Research Innovation and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petit, C.; Scudder, T.; Lambin, E. Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. Int. J. Remote Sens. 2001, 22, 3435–3456. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C. Satellites: Make Earth observations open access. Nature 2014, 513, 30–31. [Google Scholar] [PubMed]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar]
- Jensen, J.R.; Jensen, R.R. Introductory Geographic Information Systems; Pearson Higher Education: London, UK, 2012. [Google Scholar]
- Vivekananda, G.; Swathi, R.; Sujith, A. Multi-temporal image analysis for LULC classification and change detection. Eur. J. Remote Sens. 2021, 54, 189–199. [Google Scholar]
- de Mello, K.; Taniwaki, R.H.; de Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar]
- Bao, Z.; Zhang, J.; Wang, G.; Chen, Q.; Guan, T.; Yan, X.; Liu, C.; Liu, J.; Wang, J. The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China. J. Hydrol. 2019, 577, 123942. [Google Scholar]
- Luo, Z.; Shao, Q.; Zuo, Q.; Cui, Y. Impact of land use and urbanization on river water quality and ecology in a dam dominated basin. J. Hydrol. 2020, 584, 124655. [Google Scholar]
- Stephens, C.; Marshall, L.; Johnson, F. Investigating strategies to improve hydrologic model performance in a changing climate. J. Hydrol. 2019, 579, 124219. [Google Scholar] [CrossRef]
- Farooq, R.; Mekanik, F.; Imteaz, M. Long Term Seasonal Rainfall Forecasting Using Artificial Neural Network: Case Study of Northern Territory, Australia. In Hydrology & Water Resources Symposium 2022 (HWRS): The Past, the Present, the Future; Engineers Australia: Brisbane, Australia, 2022; pp. 247–254. Available online: https://search.informit.org/doi/10.3316/informit.906134357228181 (accessed on 24 August 2023).
- Syed, Z.; Mahmood, P.; Haider, S.; Ahmad, S.; Jadoon, K.Z.; Farooq, R.; Ahmad, K. Short–long-term streamflow forecasting using a coupled wavelet transform–artificial neural network (WT–ANN) model at the Gilgit River Basin, Pakistan. J. Hydroinform. 2023, 25, 881–894. [Google Scholar] [CrossRef]
- Schaperow, J.R.; Li, D.; Margulis, S.A.; Lettenmaier, D.P. A near-global, high resolution land surface parameter dataset for the variable infiltration capacity model. Sci. Data 2021, 8, 216. [Google Scholar] [PubMed]
- Giuliani, G.; Rodila, D.; Külling, N.; Maggini, R.; Lehmann, A. Downscaling Switzerland land use/land cover data using nearest neighbors and an expert system. Land 2022, 11, 615. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170–191. [Google Scholar] [CrossRef] [PubMed]
- Ahmadisharaf, E.; Camacho, R.A.; Zhang, H.X.; Hantush, M.M.; Mohamoud, Y.M. Calibration and validation of watershed models and advances in uncertainty analysis in TMDL studies. J. Hydrol. Eng. 2019, 24, 03119001. [Google Scholar] [CrossRef]
- Rajib, A.; Kim, I.; Golden, H.; Lane, C.; Kumar, S.; Yu, Z.; Jeyalakshmi, S. watershed modeling with remotely sensed big data: MODIS leaf area index improves hydrology and water quality predictions. Remote Sens. 2020, 12, 2148. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bartosovic, M.; Ma, S.; Zhang, D.; Kukanja, P.; Xiao, Y.; Su, G.; Liu, Y.; Qin, X.; Rosoklija, G.B.; et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 2022, 609, 375–383. [Google Scholar]
- Tiwari, A.K.; Singh, A.K.; Phartiyal, B.; Sharma, A. Hydrogeochemical characteristics of the Indus river water system. Chem. Ecol. 2021, 37, 780–808. [Google Scholar]
- Sarker, I.H. Machine Learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar]
- Yomo, M.; Yalo, E.N.; Gnazou, M.D.-T.; Silliman, S.; Larbi, I.; Mourad, K.A. Forecasting land use and land cover dynamics using combined remote sensing, machine learning algorithm and local perception in the Agoènyivé Plateau, Togo. Remote Sens. Appl. Soc. Environ. 2023, 30, 100928. [Google Scholar] [CrossRef]
- Woldemariam, G.W.; Tibebe, D.; Mengesha, T.E.; Gelete, T.B. Machine-learning algorithms for land use dynamics in Lake Haramaya Watershed, Ethiopia. Model. Earth Syst. Environ. 2022, 8, 3719–3736. [Google Scholar] [CrossRef]
- Bindajam, A.A.; Mallick, J.; Talukdar, S.; Shohan, A.A.A.; Alshayeb, M.J. Assessment of long-term mangrove distribution using optimised machine learning algorithms and landscape pattern analysis. Environ. Sci. Pollut. Res. 2023, 30, 73753–73779. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Huang, J.; Yuan, X.; Cheng, C.; Zhang, L. Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data. Lab. Investig. 2021, 101, 430–4411. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Blanco, V.; Japón, A.; Puerto, J. Optimal arrangements of hyperplanes for SVM-based multiclass classification. Adv. Data Anal. Classif. 2020, 14, 175–199. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, Z.; Wang, H. A Kernel function optimization and selection algorithm based on cost function maximization. In Proceedings of the 2013 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 22–23 October 2013. [Google Scholar]
- Czarnecki, W.M.; Podlewska, S.; Bojarski, A.J. Robust optimization of SVM hyperparameters in the classification of bioactive compounds. J. Chemin. 2015, 7, 1–15. [Google Scholar] [CrossRef]
- Treder, M.S. Improving SNR and Reducing Training Time of Classifiers in Large Datasets via Kernel Averaging; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Bernard, S.; Heutte, L.; Adam, S. On the selection of decision trees in random forests. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009. [Google Scholar]
- Sipper, M.; Moore, J.H. Conservation machine learning: A case study of random forests. Sci. Rep. 2021, 11, 3629. [Google Scholar] [CrossRef]
- White, E.D.; Easton, Z.M.; Fuka, D.R.; Collick, A.S.; Adgo, E.; McCartney, M.; Awulachew, S.B.; Selassie, Y.G.; Steenhuis, T.S. Development and application of a physically based landscape water balance in the SWAT model. Hydrol. Process. 2011, 25, 915–925. [Google Scholar] [CrossRef]
- Her, Y.; Frankenberger, J.; Chaubey, I.; Srinivasan, R. Threshold effects in HRU definition of the soil and water assessment tool. Trans. ASABE 2015, 58, 367–378. [Google Scholar]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Recanatesi, F.; Petroselli, A. Land cover change and flood risk in a peri-urban environment of the metropolitan area of Rome (Italy). Water Resour. Manag. 2020, 34, 4399–4413. [Google Scholar] [CrossRef]
- Kandissounon, G.A.; Kalra, A.; Ahmad, S. integrating system dynamics and remote sensing to estimate future water usage and average surface runoff in Lagos, Nigeria. Civ. Eng. J. 2018, 4, 378–393. [Google Scholar] [CrossRef]
- Umukiza, E.; Raude, J.M.; Wandera, S.M.; Petroselli, A.; Gathenya, J.M. Impacts of land use and land cover changes on peakdischarge and flow volume in kakia and esamburmbur sub-catchments of Narok Town, Kenya. Hydrology 2021, 8, 82. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojtekov, Á.J. Land use change and its impact on surface runoff from small basins: A case of Radiša basin. Folia Geogr. 2019, 61, 104. [Google Scholar]
- Pelorosso, R.; Apollonio, C.; Rocchini, D.; Petroselli, A. Effects of land use-land cover thematic resolution on environmental evaluations. Remote Sens. 2021, 13, 1232. [Google Scholar] [CrossRef]
Class Names | Landsat 8 SVM Classified Areas in m2 | Landsat 8 Random Forest Classified Areas in m2 | Landsat 8 Combine Classified Areas in m2 |
---|---|---|---|
Rain-Fed Crops (CRIR) | 4,792,441,500 | 3,822,347,700 | 29,006,659,800 |
Dry Crops (CRDY) | 5,282,307,000 | 5,707,529,100 | 6,445,646,100 |
Row Agriculture (AGRR) | 1,920,349,800 | 2,327,472,000 | 3,679,992,900 |
Crops And Grasses (CRGR) | 1,338,019,200 | 1,197,567,000 | 3,066,940,800 |
Broad Leaf Forest (FRSE) | 1,176,307,200 | 1,105,245,900 | 2,306,052,000 |
Forest Deciduous (FRSD) | 1,440,661,500 | 1,093,562,100 | 334,854,000 |
Needle Leaf Forest (FRSE) | 2,512,664,100 | 2,599,309,800 | 2,286,873,000 |
Mixed Forest (FRST) | 1,313,891,100 | 1,049,804,100 | 4,826,664,900 |
Mosaic Shrubs and Grasses (MISG) | 411,715,800 | 662,919,300 | 867,705,300 |
Mosaic Grasses and Shrubs (MIGS) | 874,218,600 | 1,264,524,300 | 1,557,319,500 |
Shrubs Land (SHRB) | 1,513,336,500 | 1,726,434,900 | 1,525,024,800 |
Herbaceous Land (RNGE) | 4,416,347,700 | 4,186,488,600 | 1,673,035,200 |
Urban Settlements (URBN) | 4,232,900,700 | 6,272,032,500 | 1,901,830,500 |
Barren Land (BARE) | 973,674,900 | 847,521,900 | 3,589,747,200 |
Water Bodies (WATB) | 1,234,278,900 | 647,824,500 | 1,968,434,100 |
Perennial Ice Cover (WATR) | 1,762,086,600 | 684,617,400 | 708,812,100 |
Class Names | Landsat 8 SVM Classified Areas in m2 | Landsat 8 Random Forest Classified Areas in m2 | Landsat 8 Combine Classified Areas in m2 |
---|---|---|---|
Rain-Fed Crops (CRIR) | 5,982,550,146 | 4,822,768,963 | 24,582,564.49 |
Dry Crops (CRDY) | 3,680,562,256 | 4,568,699,832 | 6,985,752,514 |
Row Agriculture (AGRR) | 1,744,995,559 | 2,045,955,144 | 7,293,704,112 |
Crops And Grasses (CRGR) | 603,689,880.1 | 1,388,018,688 | 4,223,103,570 |
Broad Leaf Forest (FRSE) | 612,557,897.2 | 848,808,205.6 | 226,860,643.3 |
Forest Deciduous (FRSD) | 1,354,356,714 | 661,014,099.2 | 78,211,039.68 |
Needle Leaf Forest (FRSE) | 4,461,742,689 | 3,674,827,342 | 2,000,841,830 |
Mixed Forest (FRST) | 918,870,604.2 | 1435,203,322 | 5,744,628,795 |
Mosaic Shrubs and Grasses (MISG) | 128,296,487.7 | 825,203,831.7 | 334,754,181.1 |
Mosaic Grasses and Shrubs (MIGS) | 664,754,050.5 | 1,175,044,814 | 1,020,541,339 |
Shrubs Land (SHRB) | 872,673,001.6 | 940,767,766.2 | 198,469,806.8 |
Herbaceous Land (RNGE) | 9,454,880,784 | 7,538,788,679 | 1,023,609,337 |
Urban Settlements (URBN) | 1848,227,219 | 1,972,648,721 | 1,560,824,053 |
Barren Land (BARE) | 133,631,926.5 | 105,183,218.5 | 2,181,308,750 |
Water Bodies (WATB) | 860,517,556.8 | 394,829,712 | 891,638,807 |
Perennial Ice Cover (WATR) | 202,416,3276 | 2,850,595,271 | 649,561,151.2 |
Class Names | Landsat 8 Classified Image Accuracy Values | |||||
---|---|---|---|---|---|---|
Support Vector Machines | Random Forest | Combine Classification | ||||
P_Accuracy | U_Accuracy | P_Accuracy | U_Accuracy | P_Accuracy | U_Accuracy | |
Rain-Fed Crops (CRIR) | 0.67 | 0.40 | 0.71 | 0.50 | 0.80 | 0.80 |
Dry Crops (CRDY) | 1.00 | 0.70 | 0.88 | 0.70 | 0.88 | 0.70 |
Row Agriculture (AGRR) | 0.89 | 0.80 | 1.00 | 0.50 | 0.82 | 0.90 |
Crops and Grasses (CRGR) | 1.00 | 0.60 | 0.83 | 0.50 | 1.00 | 0.60 |
Broad Leaf Forest (FRSE) | 0.91 | 1.00 | 0.88 | 0.70 | 1.00 | 1.00 |
Forest Deciduous (FRSD) | 1.00 | 0.90 | 0.75 | 0.60 | 1.00 | 0.80 |
Needle Leaf Forest (FRSE) | 1.00 | 0.90 | 0.60 | 0.90 | 0.53 | 0.90 |
Mixed Forest (FRST) | 0.83 | 1.00 | 0.57 | 0.80 | 0.67 | 0.40 |
Mosaic Shrubs and Grasses (MISG) | 0.83 | 1.00 | 0.70 | 0.70 | 0.83 | 1.00 |
Mosaic Grasses and Shrubs (MIGS) | 0.64 | 0.90 | 0.58 | 0.70 | 0.59 | 1.00 |
Shrubs Land (SHRB) | 0.69 | 0.90 | 0.75 | 0.60 | 0.82 | 0.90 |
Herbaceous Land (RNGE) | 0.83 | 1.00 | 0.45 | 0.90 | 0.59 | 1.00 |
Urban Settlements (URBN) | 0.75 | 0.30 | 0.67 | 0.20 | 1.00 | 0.30 |
Barren Land (BARE) | 0.56 | 0.90 | 0.38 | 0.50 | 0.43 | 0.30 |
Water Bodies (WATB) | 1.00 | 0.90 | 0.89 | 0.80 | 1.00 | 0.80 |
Perennial Ice Cover (WATR) | 0.91 | 1.00 | 0.71 | 1.00 | 1.00 | 0.90 |
Kappa | 0.81 | 0.64 | 0.75 | |||
Overall Accuracy (%) | 82.50 | 66.25 | 76.87 |
Class Names | Sentinel 2 Classified Image Accuracy Values | |||||
---|---|---|---|---|---|---|
Support Vector Machines | Random Forest | Combine Classification | ||||
P_Accuracy | U_Accuracy | P_Accuracy | U_Accuracy | P_Accuracy | U_Accuracy | |
Rain-Fed Crops (CRIR) | 0.83 | 0.50 | 1.00 | 0.60 | 0.75 | 0.60 |
Dry Crops (CRDY) | 0.71 | 0.50 | 0.86 | 0.60 | 0.75 | 0.60 |
Row Agriculture (AGRR) | 0.67 | 0.60 | 1.00 | 0.70 | 0.91 | 1.00 |
Crops and Grasses (CRGR) | 1.00 | 0.40 | 1.00 | 0.70 | 1.00 | 0.50 |
Broad Leaf Forest (FRSE) | 0.75 | 0.90 | 1.00 | 0.90 | 0.88 | 0.70 |
Forest Deciduous (FRSD) | 0.73 | 0.80 | 1.00 | 0.80 | 0.67 | 0.40 |
Needle Leaf Forest (FRSE) | 0.44 | 0.40 | 0.83 | 1.00 | 0.73 | 0.80 |
Mixed Forest (FRST) | 0.54 | 0.70 | 0.90 | 0.90 | 0.45 | 0.50 |
Mosaic Shrubs and Grasses (MISG) | 0.67 | 0.40 | 0.91 | 1.00 | 0.71 | 0.50 |
Mosaic Grasses and Shrubs (MIGS) | 0.59 | 1.00 | 0.71 | 1.00 | 0.89 | 0.80 |
Shrubs Land (SHRB) | 0.78 | 0.70 | 0.56 | 0.90 | 1.00 | 0.90 |
Herbaceous Land (RNGE) | 0.43 | 0.90 | 0.45 | 1.00 | 0.32 | 1.00 |
Urban Settlements (URBN) | 0.75 | 0.30 | 1.00 | 0.10 | 1.00 | 0.10 |
Barren Land (BARE) | 0.14 | 0.10 | 0.67 | 0.60 | 0.40 | 0.60 |
Water Bodies (WATB) | 0.91 | 1.00 | 0.88 | 0.70 | 1.00 | 0.70 |
Perennial Ice Cover (WATR) | 0.64 | 0.90 | 0.77 | 1.00 | 0.69 | 0.90 |
Kappa | 0.61 | 0.78 | 0.66 | |||
Overall Accuracy (%) | 63.12 | 78.12 | 66.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, F.; Kanae, S.; Farooq, R.; Iqbal, M.R.; Petroselli, A. Impact of Satellite-Derived Land Cover Resolution Using Machine Learning and Hydrological Simulations. Remote Sens. 2023, 15, 5338. https://doi.org/10.3390/rs15225338
Hanif F, Kanae S, Farooq R, Iqbal MR, Petroselli A. Impact of Satellite-Derived Land Cover Resolution Using Machine Learning and Hydrological Simulations. Remote Sensing. 2023; 15(22):5338. https://doi.org/10.3390/rs15225338
Chicago/Turabian StyleHanif, Fatima, Shinjiro Kanae, Rashid Farooq, M. Rashid Iqbal, and Andrea Petroselli. 2023. "Impact of Satellite-Derived Land Cover Resolution Using Machine Learning and Hydrological Simulations" Remote Sensing 15, no. 22: 5338. https://doi.org/10.3390/rs15225338
APA StyleHanif, F., Kanae, S., Farooq, R., Iqbal, M. R., & Petroselli, A. (2023). Impact of Satellite-Derived Land Cover Resolution Using Machine Learning and Hydrological Simulations. Remote Sensing, 15(22), 5338. https://doi.org/10.3390/rs15225338