Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland
Abstract
:1. Introduction
2. Data and Methods
2.1. Measurements of Meteorological Parameters and CO2 Content in the Atmosphere
2.1.1. Meteorological Parameters
Near-Surface Wind Speed and Direction
Vertical Profiles of Wind and Air Temperature
2.1.2. Near-Surface CO2 Mixing Ratio
2.1.3. Column-Averaged CO2 Mixing Ratio (XCO2)
2.2. The WRF-Chem Model—Adaptation to St. Petersburg and Helsinki
2.2.1. Description of the WRF-Chem Numerical Experiment
2.2.2. Initial and Boundary Conditions
2.2.3. Sources and Sinks of CO2 Emissions
Anthropogenic Emissions
Biogenic Fluxes
Other Sources and Sinks of CO2
2.2.4. Correction of the Chemical Boundary Conditions
2.3. Independent XCO2 Modelling Data in St. Petersburg
3. Results and Discussion
3.1. Comparison between Modelling and Measurement Data
3.1.1. Near-Surface Wind Speed and Direction
3.1.2. Vertical Distribution of Meteorological Parameters near St. Petersburg
3.1.3. Near-Surface CO2 Mixing Ratio in Helsinki
Modelling of Diurnal and Seasonal Variation of the Near-Surface CO2 Mixing Ratio
3.1.4. XCO2 in St. Petersburg
3.2. XCO2 in St. Petersburg as determined by Independent Modelling
3.3. Compliance of XCO2 Modelling Errors with Modern Requirements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Accounting for CO2 Content above 20 km
Appendix B. Measurements of CO2 Fluxes by Vegetation at the SMEAR Station and Partial VPRM Optimisation
Parameters | Before Correction | After Correction |
---|---|---|
a | 0.1797 | 1.4650 |
b | 0.8800 | 1.4650 |
Appendix C
References
- Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I.; et al., Eds.; In Press. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (accessed on 11 February 2021).
- Methods for Remote Determination of CO2 Emissions. The MITRE Corporation JASON Program Office 7515 Colshire Drive McLean, Virginia 22102, 13 January 2011. Available online: https://irp.fas.org/agency/dod/jason/emissions.pdf (accessed on 13 February 2021).
- Oda, T.; Bun, R.; Kinakh, V.; Topylko, P.; Halushchak, M.; Marland, G.; Lauvaux, T.; Jonas, M.; Maksyutov, S.; Nahorski, Z.; et al. Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitig. Adapt. Strat. Glob. Chang. 2019, 24, 1007–1050. [Google Scholar] [CrossRef]
- Pillai, D.; Buchwitz, M.; Gerbig, C.; Koch, T.; Reuter, M.; Bovensmann, H.; Marshall, J.; Burrows, J.P. Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: A case study for Berlin, Germany. Atmos. Meas. Tech. 2016, 16, 9591–9610. [Google Scholar] [CrossRef]
- Makarova, M.V.; Alberti, C.; Ionov, D.V.; Hase, F.; Foka, S.C.; Blumenstock, T.; Warneke, T.; Virolainen, Y.A.; Kostsov, V.S.; Frey, M.; et al. Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019. Atmos. Meas. Tech. 2021, 14, 1047–1073. [Google Scholar] [CrossRef]
- Ionov, D.V.; Makarova, M.V.; Hase, F.; Foka, S.C.; Kostsov, V.S.; Alberti, C.; Blumenstock, T.; Warneke, T.; Virolainen, Y.A. The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling. Atmos. Meas. Tech. 2021, 21, 10939–10963. [Google Scholar] [CrossRef]
- Enting, I.G. Inverse Problems in Atmospheric Constituent Transport; Cambridge University Press: Cambridge, UK, 2002; p. 392. [Google Scholar] [CrossRef]
- Nassar, R.; Jones, D.B.A.; Kulawik, S.S.; Worden, J.R.; Bowman, K.W.; Andres, R.J.; Suntharalingam, P.; Chen, J.M.; Brenninkmeijer, C.A.M.; Schuck, T.J.; et al. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements. Atmos. Meas. Tech. 2011, 11, 6029–6047. [Google Scholar] [CrossRef]
- Nassar, R.; Hill, T.G.; McLinden, C.A.; Wunch, D.; Jones, D.B.A.; Crisp, D. Quantifying CO2 Emissions From Individual Power Plants From Space. Geophys. Res. Lett. 2017, 44, 10045–10053. [Google Scholar] [CrossRef]
- Zheng, T.; Nassar, R.; Baxter, M. Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations. Environ. Res. Lett. 2019, 14, 085001. [Google Scholar] [CrossRef]
- Shekhar, A.; Chen, J.; Paetzold, J.C.; Dietrich, F.; Zhao, X.; Bhattacharjee, S.; Ruisinger, V.; Wofsy, S.C. Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2 satellite. Environ. Res. Lett. 2020, 15, 095010. [Google Scholar] [CrossRef]
- Timofeyev, Y.M.; Nerobelov, G.M.; Virolainen, Y.A.; Poberovskii, A.V.; Foka, S.C. Estimates of CO2 Anthropogenic Emission from the Megacity St. Petersburg. Dokl. Earth Sci. 2020, 494, 753–756. [Google Scholar] [CrossRef]
- Timofeyev, Y.M.; Nerobelov, G.M.; Poberovskii, A.V. Experimental Estimates of Integral Anthropogenic CO2 Emissions in the City of St. Petersburg. Izv. Atmos. Ocean. Phys. 2022, 58, 237–245. [Google Scholar] [CrossRef]
- Houweling, S.; Aben, I.; Breon, F.-M.; Chevallier, F.; Deutscher, N.; Engelen, R.; Gerbig, C.; Griffith, D.; Hungershoefer, K.; Macatangay, R.; et al. The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements. Atmos. Meas. Tech. 2010, 10, 9981–9992. [Google Scholar] [CrossRef]
- Peylin, P.; Law, R.M.; Gurney, K.R.; Chevallier, F.; Jacobson, A.R.; Maki, T.; Niwa, Y.; Patra, P.K.; Peters, K.; Rayner, P.J.; et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 2013, 10, 6699–6720. [Google Scholar] [CrossRef]
- Federal State Statistics Service. Available online: https://rosstat.gov.ru/ (accessed on 10 March 2021).
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled ‘online’ chemistry in the WRF model. Atmos. Environ. 2005, 39, 6957–6976. [Google Scholar] [CrossRef]
- Callewaert, S.; Brioude, J.; Langerock, B.; Duflot, V.; Fonteyn, D.; Müller, J.-F.; Metzger, J.-M.; Hermans, C.; Kumps, N.; Ramonet, M.; et al. Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations. Atmos. Chem. Phys. 2022, 22, 7763–7792. [Google Scholar] [CrossRef]
- Zhao, X.; Marshall, J.; Hachinger, S.; Gerbig, C.; Frey, M.; Hase, F.; Chen, J. Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG. Atmos. Chem. Phys. 2019, 19, 11279–11302. [Google Scholar] [CrossRef]
- Nerobelov, G.; Timofeyev, Y.; Smyshlyaev, S.; Foka, S.; Mammarella, I.; Virolainen, Y. Validation of WRF-Chem Model and CAMS Performance in Estimating Near-Surface Atmospheric CO2 Mixing Ratio in the Area of Saint Petersburg (Russia). Atmosphere 2021, 12, 387. [Google Scholar] [CrossRef]
- Foka, S.C.; Makarova, M.V.; Poberovsky, A.V.; Timofeev, Y.M. Temporal variations in CO2, CH4 and CO concentrations in Saint-Petersburg suburb (Peterhof). Opt. Atmos. I Okeana 2012, 32, 860–866. (In Russian) [Google Scholar]
- Nerobelov, G.M.; Timofeyev, Y.M.; Smyshlyaev, S.P.; Foka, S.C.; Imhasin, H.H. Comparison of CO2 Content in the Atmosphere of St. Petersburg According to Numerical Modeling and Observations. Izv. Atmos. Ocean. Phys. 2023, 59, 275–286. [Google Scholar] [CrossRef]
- Kempeneers, P.; Sedano, F.; Seebach, L.; Strobl, P.; San-Miguel-Ayanz, J. Data Fusion of Different Spatial Resolution Remote Sensing Images Applied to Forest-Type Mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4977–4986. [Google Scholar] [CrossRef]
- Center for Earth Observation and Modeling (CEOM). Available online: https://www.ceom.ou.edu/ (accessed on 11 April 2021).
- Kilkki, J.; Aalto, T.; Hatakka, J.; Portin, H.; Laurila, T. Atmospheric CO2 observations at Finnish urban and rural sites. Boreal Env. Res. 2015, 20, 227–242. [Google Scholar]
- Mammarella, I.; Kolari, P.; Vesala, T.; Rinne, J. Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus B Chem. Phys. Meteorol. 2007, 59, 900–909. [Google Scholar] [CrossRef]
- Available online: https://www.campbellsci.com.au/wxt536 (accessed on 11 April 2021).
- Hari, P.; Nikinmaa, E.; Pohja, T.; Siivola, E.; Bäck, J.; Vesala, T.; Kulmala, M. Station for Measuring Ecosystem-Atmosphere Relations: SMEAR. In Physical and Physiological Forest Ecology; Springer: Dordrecht, The Netherlands, 2013; pp. 471–487. [Google Scholar]
- List of SMEAR III Measurements. Available online: https://www.atm.helsinki.fi/smear/index.php/smear-iii/measurements (accessed on 11 April 2021).
- University of Wyoming, College of Engineering. Sounding Data. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 10 March 2021).
- Rella, C. Accurate Greenhouse Gas Measurements in Humid Gas Streams Using the Picarro G1301 Carbon Dioxide/Methane/Water Vapor Gas Analyzer. 2010 PICARRO, INC. Available online: http://www.cen-sun.com/ueditor/php/upload/file/20190806/1565079076987536.pdf (accessed on 21 July 2021).
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef]
- Gisi, M.; Hase, F.; Dohe, S.; Blumenstock, T.; Simon, A.; Keens, A. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy. Atmos. Meas. Tech. 2012, 5, 2969–2980. [Google Scholar] [CrossRef]
- Frey, M.; Hase, F.; Blumenstock, T.; Groß, J.; Kiel, M.; Mengis-tu Tsidu, G.; Schäfer, K.; Sha, M.K.; Orphal, J. Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions. Atmos. Meas. Tech. 2015, 8, 3047–3057. [Google Scholar] [CrossRef]
- Alberti, C.; Tu, Q.; Hase, F.; Makarova, M.V.; Gribanov, K.; Foka, S.C.; Zakharov, V.; Blumenstock, T.; Buchwitz, M.; Diekmann, C.; et al. Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using Collaborative Column Carbon Observing Network (COCCON) observations. Atmos. Meas. Tech. 2022, 15, 2199–2229. [Google Scholar] [CrossRef]
- Hu, X.-M.; Gourdji, S.M.; Davis, K.J.; Wang, Q.; Zhang, Y.; Xue, M.; Feng, S.; Moore, B.; Crowell, S.M.R. Implementation of improved parameterization of terrestrial flux in WRF-VPRM improves the simulation of nighttime CO2 peaks and a daytime CO2 band ahead of a cold front. J. Geophys. Res. Atmos. 2021, 126, e2020JD034362. [Google Scholar] [CrossRef]
- Chevallier, F.; Ciais, P.; Conway, T.J.; Aalto, T.; Anderson, B.E.; Bousquet, P.; Brunke, E.G.; Ciattaglia, L.; Esaki, Y.; Fröhlich, M.; et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. Atmos. 2010, 115, D21307. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4.3 (No. NCAR/TN-556+STR). 2021. Available online: https://opensky.ucar.edu/islandora/object/opensky:2898 (accessed on 15 August 2021).
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Janjic Zavisa, I. The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, 163–187. [Google Scholar]
- Janjic Zavisa, I. The surface layer in the NCEP Eta Model. In Proceedings of the Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, USA, 19–23 August 1996; American Meteorological Society: Boston, MA, USA, 1996; pp. 354–355. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Grell Georg, A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Wea. Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Salamanca, F.; Martilli, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations––Part II. Validation with one dimension off–line simulations. Theor. Appl. Climatol. 2010, 99, 345–356. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 5 May 2021).
- Jacobson, A.R.; Schuldt, K.N.; Miller, J.B.; Tans, P.; Andrews, A.; Mund, J.; Aalto, T.; Bakwin, P.; Bergamaschi, P.; Biraud, S.C.; et al. CarbonTracker Near-Real Time, CT-NRT.v2020-1. NOAA Earth System Research Laboratory, Global Monitoring Division. 2020. Available online: https://gml.noaa.gov/ccgg/carbontracker/CT-NRT.v2020-1/ (accessed on 5 May 2021).
- Tomohiro, O.; Maksyutov, S. ODIAC Fossil Fuel CO2 Emissions Dataset (Version name: ODIAC2020b). Center for Global Environmental Research, National Institute for Environmental Studies. 2015. Available online: https://www.nies.go.jp/doi/10.17595/20170411.001-e.html (accessed on 15 May 2021).
- Böttcher, K.; Markkanen, T.; Thum, T.; Aalto, T.; Aurela, M.; Reick, C.H.; Kolari, P.; Arslan, A.N.; Pulliainen, J. Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations. Remote Sens. 2016, 8, 580. [Google Scholar] [CrossRef]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gerbig, C.; Munger, J.W.; Chow, V.Y.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob. Biogeochem. Cycles 2008, 22, GB2005. [Google Scholar] [CrossRef]
- Nerobelov, G.M.; Timofeyev, Y.M. Estimates of CO2 Emissions and Uptake by the Water Surface near St. Petersburg Megalopolis. Atmos. Ocean. Opt. 2021, 34, 422–427. [Google Scholar] [CrossRef]
- Nikitenko, A.A.; Nerobelov, G.M.; Timofeyev, Y.M.; Poberovskii, A.V. Analysis of ground-based spectroscopic measurements of CO2 in Peterhof. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa 2021, 18, 265–272. (In Russian) [Google Scholar] [CrossRef]
- Evaluation and Quality Control document for observation-based CO2 flux estimates for the period 1979–2021, v21r1 Version 2.0. Available online: https://atmosphere.copernicus.eu (accessed on 10 June 2021).
- Mues, A.; Lauer, A.; Lupascu, A.; Rupakheti, M.; Kuik, F.; Lawrence, M.G. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley. Geosci. Model Dev. 2018, 11, 2067–2091. [Google Scholar] [CrossRef]
- Li, H.; Claremar, B.; Wu, L.; Hallgren, C.; Körnich, H.; Ivanell, S.; Sahlée, E. A sensitivity study of the WRF model in offshore wind modeling over the Baltic Sea. Geosci. Front. 2021, 12, 101229. [Google Scholar] [CrossRef]
- Miller, S.T.K.; Keim, B.D.; Talbot, R.W.; Mao, H. Sea breeze: Structure, forecasting, and impacts. Rev. Geophys. 2003, 41, 1011. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Richardson, S.J.; Deng, A.; Stauffer, D.R.; Davis, K.J.; Jacobson, G.; Rella, C.; Calonder, G.-P.; DeCola, P.L. Urban Emissions of CO2 from Davos, Switzerland: The First Real-Time Monitoring System Using an Atmospheric Inversion Technique. J. Appl. Meteorol. Climatol. 2013, 52, 2654–2668. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; Chan, P.W.; He, Y.C. Seasonal and diurnal variation of marine wind characteristics based on lidar measurements. Meteorol. Appl. 2020, 27, e1918. [Google Scholar] [CrossRef]
- Dekking, F.M.; Kraaikamp, C.; Lopuhaä, H.P.; Meester, L.E. A Modern Introduction to Probability and Statistics; Springer Texts in Statistics; Springer: Cham, Switzerland, 2005. [Google Scholar] [CrossRef]
- CarbonTracker Documentation CT2022 Release. Available online: https://gml.noaa.gov/ccgg/carbontracker/documentation.php#tth_sEc4.1 (accessed on 12 June 2022).
- Nassar, R.; Napier-Linton, L.; Gurney, K.R.; Andres, R.J.; Oda, T.; Vogel, F.R.; Deng, F. Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. J. Geophys. Res. Atmos. 2013, 118, 917–933. [Google Scholar] [CrossRef]
- Annual Report of Public Joint Stock Company of Generating Companies of the Wholesale Electricity Market for 2021. Available online: https://www.ogk2.ru/upload/iblock/e9f/2fl5rq2ylzvtevw1dh2tf89187c9s0jc/2022_06_29_ogk_2_AR_RUS_spread_print.pdf (accessed on 10 July 2022).
- Nerobelov, G.M.; Timofeyev, Y.M.; Smyshlyaev, S.P.; Virolainen, Y.A.; Makarova, M.V.; Foka, S.C. Comparison of CAMS Data on CO2 with Measurements in Peterhof. Atmos. Ocean. Opt. 2021, 34, 689–694. [Google Scholar] [CrossRef]
- Kulmala, L.; Pumpanen, J.; Kolari, P.; Dengel, S.; Berninger, F.; Köster, K.; Matkala, L.; Vanhatalo, A.; Vesala, T.; Bäck, J. Inter-and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agric. For. Meteorol. 2019, 271, 1–11. [Google Scholar] [CrossRef]
- Mammarella, I.; Launiainen, S.; Gronholm, T.; Keronen, P.; Pumpanen, J.; Rannik, Ü.; Vesala, T. Relative Humidity Effect on the High Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System. J. Atmos. Ocean. Technol. 2009, 26, 1856–1866. [Google Scholar] [CrossRef]
- Mammarella, I.; Peltola, O.; Nordbo, A.; Järvi, L.; Rannik, Ü. Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmos. Meas. Tech. 2016, 9, 4915–4933. [Google Scholar] [CrossRef]
Parameter | Description | |
---|---|---|
Horizontal extent and resolution | d01 (800 × 800 km2)—8 km, d02 (320 × 320 km2)—4 km, d03 (110 × 110 km2, St. Petersburg) and d04 (110 × 110 km2, Helsinki)—2 km | |
Vertical resolution | 25 hybrid levels, from the surface up to 50 hPa | |
Initial and boundary conditions | Meteorology | ERA5 reanalysis, hor.res. 0.25°, up to ~80 km on 137 hybrid levels |
Atmospheric CO2 content | CT-NRT.v2022-1, hor.res. 2 × 3°, up to ~200 km on 35 hybrid levels | |
CO2 sources and sinks | Anthropogenic emissions | ODIAC 2019, hor.res. ~0.43 km2 |
Biogenic fluxes | VPRM (online, every model time step); Partially optimised by flux observations in Hyytiälä, Finland (see Appendix B); Hor.res.—as in d01-d04, Temporal resolution—8 days | |
Simulation period | January 2019–March 2020, 10 min output | |
Chemistry option | GHG option: CO2 is treated as a fully inert tracer |
Process | Scheme Name | Source |
---|---|---|
Transfer of long-wave EM radiationin the atmosphere | RRTM Longwave Scheme | [39] |
Transfer of short-wave EM radiationin the atmosphere | Dudhia Shortwave Scheme | [40] |
Earth’s boundary layer model | Mellor–Yamada–Janjic | [41] |
Earth’s surface layer model | Eta Similarity Scheme | [42,43] |
Model of land-surface layers’ interaction | Unified Noah land-surface scheme for non-urban landcover surface energy fluxes | [44] |
Vertical transport and convective clouds | The Grell 3D ensemble cumulus convection scheme | [45] |
Microphysics of clouds | WRF single-moment six-class schemes | [46] |
Urban effect | Building Effect Parameterization (BEP) | [47] |
Data | Dataset Size | Mean and STD, ppm | MD and SDD, ppm (%) | CC |
---|---|---|---|---|
GGA—WRF-Chem | 8565 | 418.0 ± 0.2 and 9.7/ 417.4 ± 0.2 and 9.5 | 0.6 ± 0.15 and 7.0 (0.15 ± 0.04 and 1.7) | 0.73 |
Data | Mean and STD, ppm | MD and SDD, ppm (%) | CC |
---|---|---|---|
Bruker EM27/SUN—WRF-Chem | 408.4 ± 0.2 and 3.4/ 409.7 ± 0.2 and 3.9 | −1.3 ± 0.07 and 1.2 (−0.3 ± 0.02 and 0.3) | 0.95 |
N | Name | Description |
---|---|---|
1 | Control | Control WRF-Chem modelling XCO2 = XCO2 BC + XCO2 Ant + XCO2 Bio |
2 | No bio | XCO2 = XCO2 BC + XCO2 Ant |
3 | No ant | XCO2 = XCO2 BC + XCO2 Bio |
4 | No bio and ant | XCO2 = XCO2 BC |
5 | BCs reduced by 0.1% | XCO2 = XCO2 BC × 0.999 + XCO2 Ant + XCO2 Bio |
6 | BCs reduced by 0.3% | XCO2 = XCO2 BC × 0.997 + XCO2 Ant + XCO2 Bio |
7 | BCs reduced by 0.5% | XCO2 = XCO2 BC × 0.995 + XCO2 Ant + XCO2 Bio |
8 | BCs reduced by 0.7% | XCO2 = XCO2 BC × 0.993 + XCO2 Ant + XCO2 Bio |
9 | BCs reduced by 1.0% | XCO2 = XCO2 BC × 0.990 + XCO2 Ant + XCO2 Bio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nerobelov, G.; Timofeyev, Y.; Foka, S.; Smyshlyaev, S.; Poberovskiy, A.; Sedeeva, M. Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland. Remote Sens. 2023, 15, 5757. https://doi.org/10.3390/rs15245757
Nerobelov G, Timofeyev Y, Foka S, Smyshlyaev S, Poberovskiy A, Sedeeva M. Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland. Remote Sensing. 2023; 15(24):5757. https://doi.org/10.3390/rs15245757
Chicago/Turabian StyleNerobelov, Georgii, Yuri Timofeyev, Stefani Foka, Sergei Smyshlyaev, Anatoliy Poberovskiy, and Margarita Sedeeva. 2023. "Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland" Remote Sensing 15, no. 24: 5757. https://doi.org/10.3390/rs15245757
APA StyleNerobelov, G., Timofeyev, Y., Foka, S., Smyshlyaev, S., Poberovskiy, A., & Sedeeva, M. (2023). Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland. Remote Sensing, 15(24), 5757. https://doi.org/10.3390/rs15245757