Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum Vegetation Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Ground-Truth Sampling
2.3. Unmanned Aerial Vehicle Image Acquisition
2.4. Model Cross-Validation and Fitting
3. Results
3.1. Model Cross-Validation and Selection
3.2. Model Fitting and Analysis
3.3. Final Model Goodness-of-Fit
4. Discussion
4.1. Can Visible Spectrum Vegetation Indices Be Used to Predict Concentration and Content-Based Cereal Rye Biomass and Nutrient Accumulation?
4.2. How Accurately Can Visible-Spectrum Vegetation Indices Predict Cereal Rye Biomass, Carbon, Nitrogen, Phosphorus, Potassium, and Sulfur Concentration and Content?
4.3. What Potential Limitations Exist in the Currently Developed Models for Cereal Rye Biomass and Nutrient Concentration and Content?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SARE-CTIC. 2015 Cover Crop Survey. Sustainable Agriculture Research and Education Conservation Technology Information Center, 2015. Available online: https://www.sare.org/wp-content/uploads/2014-2015-Cover-Crop-Report.pdf (accessed on 7 July 2021).
- SARE-CTIC. 2017 Cover Crop Survey. Sustainable Agriculture Research and Education Conservation Technology Information Center, 2017. Available online: https://www.sare.org/wp-content/uploads/2016-2017-Cover-Crop-Survey-Report.pdf (accessed on 7 July 2021).
- Strock, J.S.; Porter, P.M.; Russelle, M.P. Cover cropping to reduce nitrate loss through subsurface drainage in the northern US Corn Belt. J. Environ. Qual. 2004, 33, 1010–1016. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B.; Singer, J.W. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water. Agric. Water Manag. 2012, 110, 25–33. [Google Scholar] [CrossRef]
- Lacey, C.G.; Armstrong, S.D. In field measurements of nitrogen mineralization following fall applications of N and the termination of winter cover crops. Air Soil Water Res. 2014, 7, ASWR-S13861. [Google Scholar] [CrossRef] [Green Version]
- Ruffatti, M.D.; Roth, R.T.; Lacey, C.G.; Armstrong, S.D. Impacts of nitrogen application timing and cover crop inclusion on subsurface drainage water quality. Agric. Water Manag. 2019, 211, 81–88. [Google Scholar] [CrossRef]
- Odell, R.T.; Melsted, S.W.; Walker, W.M. Changes in organic carbon and nitrogen of Morrow Plot soils under different treatments, 1904–1973. Soil Sci. 1984, 137, 160–171. [Google Scholar] [CrossRef]
- Danso, S.K.; Labandera, C.; Pastorini, D.; Curbelo, S. Herbage yield and nitrogen fixation in a triple species mixed sward of white clover, lotus and fescue. Soil Biol. Biochem. 1991, 23, 65–70. [Google Scholar] [CrossRef]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Nevins, C.J.; Lacey, C.; Armstrong, S. The synchrony of cover crop decomposition, enzyme activity, and nitrogen availability in a corn agroecosystem in the Midwest United States. Soil Tillage Res. 2020, 197, 104518. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Steibel, J.P.; Snapp, S.; Kravchenko, A.N. Cover crop effect on corn growth and yield as influenced by topography. Agric. Ecosyst. Environ. 2014, 189, 229–239. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Finley, A.O.; Gehl, R.; Kravchenko, S. Nonlinear hierarchical models for predicting cover crop biomass using Normalized Difference Vegetation Index. Remote Sens. Environ. 2010, 114, 2833–2840. [Google Scholar] [CrossRef]
- Hassler, S.C.; Baysal-Gurel, F. Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy 2019, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 991. [Google Scholar] [CrossRef] [Green Version]
- Lussem, U.; Bolten, A.; Gnyp, M.L.; Jasper, J.; Bareth, G. Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Acorsi, M.G.; das Dores Abati Miranda, F.; Martello, M.; Smaniotto, D.A.; Sartor, L.R. Estimating biomass of black oat using UAV-based RGB imaging. Agronomy 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Burjel, J.C.; Isermann, J.; Goeser, N.J.; Pittelkow, C.M. Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability. J. Soil Water Conserv. 2019, 74, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Cheng, D.; Geng, C.; Zhang, Z.; Xiang, Y.; Hu, T. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize. Biosyst. Eng. 2021, 202, 42–54. [Google Scholar] [CrossRef]
- Hively, W.D.; Lang, M.; McCarty, G.W.; Keppler, J.A.S.O.N.; Sadeghi, A.; McConnell, L.L. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. J. Soil Water Conserv. 2009, 64, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Lacey, C.G.; Armstrong, S.D. The feasibility of satellite remote sensing and spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small watershed. J. Soil Water Conserv. 2018, 73, 682–692. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. Int. J. Remote Sens. 2007, 28, 4897–4911. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Ma, B.L.; De Haan, B.; Zheng, Z.; Xue, A.G.; Chen, Y.; de Silva, N.D.; Byker, H.; Mountain, N.; Yan, W. Exploring the relationships between biomass production, nutrient acquisition, and phenotypic traits: Testing oat genotypes as a cover crop. J. Plant Nutr. 2022, 45, 2931–2944. [Google Scholar] [CrossRef]
- Havlin, J.L.; Soltanpour, P.N. A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1980, 11, 969–980. [Google Scholar] [CrossRef]
- USEPA. Method 3052: Microwave-Assisted Acid Digestion of Siliceous and Organically Based Matrices; United States Environmental Protection Agency: Washington, DC, USA, 1996.
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Honeycutt, C.W.; Potaro, L.J. Field evaluation of heat units for predicting crop residue carbon and nitrogen mineralization. Plant Soil 1990, 125, 213–220. [Google Scholar] [CrossRef]
- Rusch, H.L.; Coulter, J.A.; Grossman, J.M.; Johnson, G.A.; Porter, P.M.; Garcia y Garcia, A. Towards sustainable maize production in the US upper Midwest with interseeded cover crops. PloS ONE 2020, 15, e0231032. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Barbosa, B.D.S.; Ferraz, G.A.S.; Gonçalves, L.M.; Marin, D.B.; Maciel, D.T.; Ferraz, P.F.P.; Rossi, G. RGB vegetation indices applied to grass monitoring: A qualitative analysis. Agron. Res. 2019, 17, 349–357. [Google Scholar]
- Bareth, G.E.; Bolten, A.N.; Hollberg, J.E.; Aasen, H.; Burkart, A.; Schellberg, J. Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE), Germany. DGPF Tag. 2015, 24, 55–62. [Google Scholar]
- Yeom, J.; Jung, J.; Chang, A.; Ashapure, A.; Maeda, M.; Maeda, A.; Landivar, J. Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sens. 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-green-blue high-resolution digital images for assessment of winter cover crop biomass. GIScience Remote Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Roth, L.; Streit, B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach. Precis. Agric. 2018, 19, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Et, T. Hyperspectral estimation model for nitrogen contents of summer corn leaves under rainred conditions. Pak. J. Bot. 2013, 45, 1623–1630. [Google Scholar]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A.G.; Féret, J.B.; Jacquemoud, S.; Ustin, S.L. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 2014, 87, 28–38. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Xu, X.G.; Zhao, C.J.; Wang, J.H.; Zhang, J.C.; Song, X.Y. Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley. Precis. Agric. 2014, 15, 227–240. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Li, Z.; Song, X.; Li, Z.; Xu, X.; Wang, P.; Zhao, C. Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sens. 2020, 12, 3778. [Google Scholar] [CrossRef]
Site | Coordinates | Cereal Rye Planting Date | Cereal Rye Termination Date |
---|---|---|---|
Field 1 | 40°29′17.8″N 86°59′38.8″W | 18 September 2020 | 17 April 2021 |
Field 2 | 39°02′00.7″N 85°32′05.7″W | 9 October 2020 | 16 April 2021 |
Field 1 | Field 2 | ||||
---|---|---|---|---|---|
Sample Date | Cumulative GDD | Cumulative Precipitation, mm | Sample Date | Cumulative GDD | Cumulative Precipitation, mm |
29 March 2021 | 1225.2 | 319.8 | 3 December 2020 | 575.0 | 255.5 |
6 April 2021 | 1316.1 | 322.6 | 10 December 2020 | 600.7 | 255.5 |
12 April 2021 | 1408.2 | 340.1 | 22 March 2021 | 976.1 | 500.1 |
1 April 2021 | 1084.9 | 550.7 | |||
8 April 2021 | 1184.2 | 555.5 | |||
16 April 2021 | 1286.9 | 584.0 |
Vegetation Index † | Equation ‡ | Reference |
---|---|---|
VARI | [32] | |
GLI | [33] | |
MGRVI | [14] | |
RGBVI | [14] | |
ExG | [34] |
Biomass | C | N | P | K | S | ||
---|---|---|---|---|---|---|---|
Field | Date | Kg ha−1 | |||||
1 | 29 March2021 | 1143 (99) | 422 (36) | 26.4 (2.3) | 2.83 (0.48) | 22.8 (2.3) | 1.93 (0.16) |
6 April 2021 | 1762 (144) | 651 (52) | 37.2 (2.8) | 4.90 (0.65) | 36.5 (3.5) | 2.56 (0.19) | |
12 April 2021 | 1550 (161) | 574 (59) | 33.4 (3.3) | 3.66 (0.62) | 34.5 (4.0) | 2.25 (0.21) | |
2 | 3 December 2020 | 314 (20) | 108 (7) | 11.4 (0.6) | 1.43 (0.09) | 7.17 (0.5) | 0.79 (0.04) |
10 December 2020 | 404 (17) | 148 (6) | 14.4 (0.5) | 1.84 (0.09) | 8.59 (0.4) | 1.03 (0.04) | |
22 March 2021 | 868 (27) | 316 (10) | 22.2 (0.9) | 2.64 (0.13) | 15.5 (0.8) | 1.67 (0.06) | |
1 April 2021 | 1193 (62) | 432 (22) | 25.0 (1.5) | 3.81 (0.26) | 25.7 (1.6) | 1.92 (0.10) | |
8 April 2021 | 1720 (66) | 629 (23) | 29.7 (1.3) | 5.07 (0.35) | 36.8 (2.1) | 2.40 (0.11) | |
16 April 2021 | 4008 (103) | 1469 (37) | 58.4 (2.9) | 10.79 (0.41) | 84.5 (2.8) | 4.86 (0.15) |
C | N | P | K | S | ||
---|---|---|---|---|---|---|
Field | Date | % | ||||
1 | 29 March2021 | 37.1 (0.13) | 2.35 (0.07) | 0.213 (0.02) | 1.95 (0.05) | 0.174 (0.004) |
6 April 2021 | 37.1 (0.12) | 2.17 (0.06) | 0.202 (0.02) | 2.03 (0.03) | 0.151 (0.005) | |
12 April 2021 | 37.2 (0.24) | 2.22 (0.07) | 0.206 (0.01) | 2.17 (0.03) | 0.151 (0.005) | |
2 | 3 December 2020 | 34.7 (0.31) | 3.69 (0.06) | 0.454 (0.01) | 2.29 (0.03) | 0.257 (0.004) |
10 December 2020 | 36.7 (0.16) | 3.59 (0.06) | 0.456 (0.01) | 2.12 (0.04) | 0.255 (0.004) | |
22 March 2021 | 36.4 (0.16) | 2.56 (0.06) | 0.302 (0.01) | 1.76 (0.05) | 0.193 (0.003) | |
1 April 2021 | 36.3 (0.10) | 2.09 (0.05) | 0.316 (0.01) | 2.14 (0.06) | 0.162 (0.003) | |
8 April 2021 | 36.6 (0.12) | 1.72 (0.02) | 0.288 (0.01) | 2.11 (0.04) | 0.139 (0.002) | |
16 April 2021 | 36.6 (0.05) | 1.45 (0.05) | 0.269 (0.01) | 2.11 (0.04) | 0.121 (0.002) |
Statistic | VARI | GLI | MGRVI | RGBVI | ExG | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Conc | Content | Conc | Content | Conc | Content | Conc | Content | Conc | Content | ||
Bio | Adj. R2 | 0.04 | 0.33 | 0.25 | 0.35 | 0.20 | |||||
RMSE | 1173 | 983 | 1038 | 970 | 1075 | ||||||
%RMSE | 24% | 20% | 21% | 20% | 22% | ||||||
C | Adj. R2 | 0.12 | 0.05 | 0.04 | 0.34 | 0.07 | 0.25 | 0.04 | 0.34 | 0.05 | 0.21 |
RMSE | 1.03 | 430 | 1.06 | 358 | 1.06 | 379 | 1.06 | 358 | 1.07 | 394 | |
%RMSE | 12% | 24% | 12% | 20% | 13% | 21% | 12% | 20% | 12% | 21% | |
N | Adj. R2 | 0.02 | 0.08 | 0.13 | 0.47 | 0.06 | 0.34 | 0.13 | 0.47 | 0.13 | 0.26 |
RMSE | 0.79 | 17.9 | 0.75 | 13.1 | 0.77 | 14.9 | 0.75 | 13.2 | 0.75 | 15.7 | |
%RMSE | 25% | 15% | 24% | 11% | 24% | 12% | 24% | 11% | 23% | 13% | |
P | Adj. R2 | 0.15 | 0.07 | 0.03 | 0.37 | 0.09 | 0.35 | 0.03 | 0.42 | 0.05 | 0.19 |
RMSE | 0.10 | 3.39 | 0.11 | 2.77 | 0.11 | 2.80 | 0.11 | 2.66 | 0.11 | 3.16 | |
%RMSE | 21% | 22% | 23% | 18% | 23% | 18% | 23% | 17% | 23% | 21% | |
K | Adj. R2 | 0.04 | 0.06 | 0.12 | 0.39 | 0.13 | 0.29 | 0.12 | 0.40 | 0.20 | 0.24 |
RMSE | 0.26 | 25.9 | 0.25 | 20.7 | 0.25 | 22.4 | 0.25 | 20.6 | 0.24 | 23.2 | |
%RMSE | 21% | 23% | 20% | 18% | 20% | 20% | 20% | 18% | 19% | 20% | |
S | Adj. R2 | 0.05 | 0.06 | 0.20 | 0.38 | 0.07 | 0.32 | 0.17 | 0.41 | 0.18 | 0.21 |
RMSE | 0.05 | 1.34 | 0.05 | 1.07 | 0.05 | 1.13 | 0.05 | 1.05 | 0.05 | 1.21 | |
%RMSE | 24% | 22% | 22% | 17% | 24% | 18% | 23% | 17% | 22% | 20% |
Statistic | VARI | GLI | MGRVI | RGBVI | ExG | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Conc | Content | Conc | Content | Conc | Content | Conc | Content | Conc | Content | ||
Bio | Adj. R2 | 0.63 | 0.78 | 0.80 | 0.78 | 0.61 | |||||
RMSE | 725 | 554 | 556 | 554 | 750 | ||||||
%RMSE | 15% | 11% | 11% | 11% | 15% | ||||||
C | Adj. R2 | 0.16 | 0.63 | 0.21 | 0.78 | 0.19 | 0.79 | 0.20 | 0.78 | 0.16 | 0.62 |
RMSE | 1.05 | 266 | 0.97 | 208 | 1.00 | 203 | 0.99 | 205 | 1.04 | 272 | |
%RMSE | 12% | 15% | 11% | 12% | 12% | 11% | 12% | 11% | 12% | 15% | |
N | Adj. R2 | 0.80 | 0.50 | 0.79 | 0.76 | 0.79 | 0.73 | 0.78 | 0.77 | 0.80 | 0.52 |
RMSE | 0.35 | 13.2 | 0.36 | 9.11 | 0.36 | 9.75 | 0.37 | 8.98 | 0.35 | 12.7 | |
%RMSE | 11% | 11% | 11% | 8% | 11% | 8% | 12% | 7% | 11% | 10% | |
P | Adj. R2 | 0.67 | 0.55 | 0.77 | 0.82 | 0.73 | 0.80 | 0.77 | 0.83 | 0.71 | 0.55 |
RMSE | 0.07 | 2.51 | 0.05 | 1.50 | 0.06 | 1.59 | 0.05 | 1.48 | 0.06 | 2.44 | |
%RMSE | 14% | 16% | 10% | 10% | 11% | 10% | 11% | 10% | 12% | 16% | |
K | Adj. R2 | 0.16 | 0.61 | 0.22 | 0.82 | 0.22 | 0.81 | 0.23 | 0.82 | 0.27 | 0.62 |
RMSE | 0.28 | 16.9 | 0.26 | 11.1 | 0.26 | 11.5 | 0.25 | 11.0 | 0.24 | 16.5 | |
%RMSE | 22% | 15% | 21% | 10% | 21% | 10% | 20% | 10% | 19% | 15% | |
S | Adj. R2 | 0.83 | 0.56 | 0.81 | 0.79 | 0.81 | 0.79 | 0.80 | 0.79 | 0.81 | 0.57 |
RMSE | 0.02 | 0.92 | 0.02 | 0.63 | 0.02 | 0.63 | 0.02 | 0.62 | 0.02 | 0.91 | |
%RMSE | 10% | 15% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 15% |
Model VI | Intercept | VI | Long | Lat | Elev | GDD | Precip | |
---|---|---|---|---|---|---|---|---|
C | GLI | 28.05 | −11.02 | 0.002 | −0.002 | |||
MGRVI | 10.54 | −5.937 | −0.232 | 0.001 | ||||
RGBVI | 23.68 | −12.78 | 0.002 | −0.002 | ||||
N | GLI | 5.503 | −2.811 | −0.008 | −0.002 | −0.002 | ||
MGRVI | 7.305 | −2.269 | −0.016 | −0.003 | ||||
RGBVI | 3.949 | −3.786 | −0.008 | −0.002 | −0.001 | |||
P | GLI | 505.2 | 1.460 | 10.58 | 10.30 | −0.004 | −0.001 | |
MGRVI | 673.8 | 0.854 | 14.21 | 13.93 | −0.005 | −0.001 | ||
RGBVI | 516.5 | 1.928 | 10.80 | 10.52 | −0.004 | −0.001 | ||
K | GLI | 1118 | 3.521 | 23.45 | 22.85 | 0.001 | −0.003 | |
MGRVI | 1335 | 2.654 | 28.07 | 27.43 | 0.002 | −0.003 | ||
RGBVI | 1099 | 4.856 | 22.99 | 22.39 | 0.001 | −0.003 | ||
S | GLI | −1.045 | −0.277 | 0.032 | −0.0002 | |||
MGRVI | −0.402 | −0.179 | −0.001 | −0.0002 | ||||
RGBVI | −1.133 | −0.362 | 0.030 | −0.0002 |
Model VI | Intercept | VI | Long | Lat | Elev | GDD | Precip | |
---|---|---|---|---|---|---|---|---|
Bio | GLI | 162,100 | 20,100 | −3871 | 9.66 | −13.15 | ||
MGRVI | 176,598 | 15,399 | −4252 | 11.54 | −16.55 | |||
RGBVI | 175,800 | 27,280 | −3926 | 10.06 | −13.91 | |||
C | GLI | 59,577 | 7289.7 | −1424 | 3.57 | −4.87 | ||
MGRVI | 64,866 | 5603.7 | −1563 | 4.25 | −6.10 | |||
RGBVI | 64,567 | 9905.5 | −1444 | 3.71 | −5.15 | |||
N | GLI | 4119 | 384.25 | 45.42 | 0.115 | −0.156 | ||
MGRVI | 47,630 | 271.90 | 978.2 | 928.7 | 0.150 | −0.218 | ||
RGBVI | 4426 | 518.73 | 46.45 | 0.122 | −0.170 | |||
P | GLI | 8331 | 78.36 | 169.5 | 159.2 | 0.024 | −0.033 | |
MGRVI | 14,150 | 56.06 | 293.9 | 282.6 | 0.031 | −0.046 | ||
RGBVI | 8260 | 106.6 | 166.8 | 156.3 | 0.025 | −0.036 | ||
K | GLI | 3718 | 506.5 | −87.93 | 0.214 | −0.302 | ||
MGRVI | 8577 | 381.3 | 97.12 | 0.262 | −0.387 | |||
RGBVI | 4065 | 688.8 | −89.31 | 0.224 | −0.321 | |||
S | GLI | 162.4 | 26.26 | −3.764 | 0.009 | −0.012 | ||
MGRVI | 378.5 | 20.05 | 4.251 | 0.012 | −0.017 | |||
RGBVI | 180.4 | 35.71 | −3.836 | 0.010 | −0.013 |
Response Variable | Units | Multiple R2 | Adjusted R2 | RMSE | % RMSE | |
---|---|---|---|---|---|---|
Biomass | kg ha−1 | GLI | 0.79 | 0.79 | 486 | 10% |
MGRVI | 0.81 | 0.81 | 464 | 9% | ||
RGBVI | 0.80 | 0.8 | 480 | 10% | ||
Carbon | % | GLI | 0.35 | 0.34 | 1.07 | 12% |
MGRVI | 0.35 | 0.34 | 1.07 | 12% | ||
RGBVI | 0.34 | 0.33 | 1.08 | 13% | ||
kg ha−1 | GLI | 0.80 | 0.79 | 177 | 10% | |
MGRVI | 0.81 | 0.81 | 169 | 9% | ||
RGBVI | 0.80 | 0.80 | 175 | 10% | ||
Nitrogen | % | GLI | 0.87 | 0.87 | 0.27 | 10% |
MGRVI | 0.87 | 0.87 | 0.27 | 10% | ||
RGBVI | 0.87 | 0.87 | 0.27 | 10% | ||
kg ha−1 | GLI | 0.77 | 0.76 | 7.08 | 6% | |
MGRVI | 0.80 | 0.79 | 6.63 | 5% | ||
RGBVI | 0.78 | 0.78 | 6.91 | 6% | ||
Phosphorus | % | GLI | 0.83 | 0.83 | 0.05 | 10% |
MGRVI | 0.83 | 0.83 | 0.05 | 11% | ||
RGBVI | 0.84 | 0.84 | 0.05 | 10% | ||
kg ha−1 | GLI | 0.78 | 0.78 | 1.50 | 10% | |
MGRVI | 0.80 | 0.80 | 1.44 | 9% | ||
RGBVI | 0.80 | 0.79 | 1.46 | 9% | ||
Potassium | % | GLI | 0.34 | 0.34 | 0.22 | 18% |
MGRVI | 0.36 | 0.35 | 0.22 | 18% | ||
RGBVI | 0.35 | 0.34 | 0.22 | 19% | ||
kg ha−1 | GLI | 0.79 | 0.79 | 10.7 | 9% | |
MGRVI | 0.82 | 0.81 | 10.1 | 9% | ||
RGBVI | 0.80 | 0.80 | 10.6 | 9% | ||
Sulfur | % | GLI | 0.85 | 0.85 | 0.02 | 10% |
MGRVI | 0.84 | 0.84 | 0.02 | 10% | ||
RGBVI | 0.85 | 0.85 | 0.02 | 10% | ||
kg ha−1 | GLI | 0.74 | 0.74 | 0.64 | 10% | |
MGRVI | 0.78 | 0.77 | 0.60 | 10% | ||
RGBVI | 0.78 | 0.75 | 0.63 | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roth, R.T.; Chen, K.; Scott, J.R.; Jung, J.; Yang, Y.; Camberato, J.J.; Armstrong, S.D. Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum Vegetation Indices. Remote Sens. 2023, 15, 580. https://doi.org/10.3390/rs15030580
Roth RT, Chen K, Scott JR, Jung J, Yang Y, Camberato JJ, Armstrong SD. Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum Vegetation Indices. Remote Sensing. 2023; 15(3):580. https://doi.org/10.3390/rs15030580
Chicago/Turabian StyleRoth, Richard T., Kanru Chen, John R. Scott, Jinha Jung, Yang Yang, James J. Camberato, and Shalamar D. Armstrong. 2023. "Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum Vegetation Indices" Remote Sensing 15, no. 3: 580. https://doi.org/10.3390/rs15030580
APA StyleRoth, R. T., Chen, K., Scott, J. R., Jung, J., Yang, Y., Camberato, J. J., & Armstrong, S. D. (2023). Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum Vegetation Indices. Remote Sensing, 15(3), 580. https://doi.org/10.3390/rs15030580