Forward-Looking Super-Resolution Imaging of MIMO Radar via Sparse and Double Low-Rank Constraints
Abstract
:1. Introduction
2. Signal Model
3. Proposed Method
3.1. Low-Rank Property Analysis
3.2. CSDLR Model and Solution Algorithm
Algorithm 1 ALM-ADMM for solving (18) |
|
4. Experiments and Analysis
4.1. Simulated Point Target Results
4.2. Simulated Surface Target Results
4.3. Measured Data Surface Target Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, D.; Zhang, Y.; Pei, J.; Huo, W.; Zhang, Y.; Huang, Y.; Yang, J. Forward-looking geometric configuration optimization design for spaceborne-airborne multistatic synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8033–8047. [Google Scholar] [CrossRef]
- Kim, S.; Ka, M.H. Forward-looking electromagnetic wave imaging using a radial scanning multichannel radar. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Huang, Y.; Zha, Y.; Wang, Y.; Yang, J. Forward looking radar imaging by truncated singular value decomposition and its application for adverse weather aircraft landing. Sensors 2015, 15, 14397–14414. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, M.; Zuo, L.; Sun, H.; Chen, H.; Li, Y. Forward-Looking Super-Resolution Imaging for Sea-Surface Target with Multi-Prior Bayesian Method. Remote Sens. 2021, 14, 26. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Xie, R. Ground Maneuvering Target Focusing via High-Order Phase Correction in High-Squint Synthetic Aperture Radar. Remote Sens. 2022, 14, 1514. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Xie, R.; Zhang, L. Focusing high-squint synthetic aperture radar data based on factorized back-projection and precise spectrum fusion. Remote Sens. 2019, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Chen, R.; Yang, T.; Liu, X.; Liu, H.; Su, T.; Wan, L. An efficient strategy for accurate detection and localization of UAV swarms. IEEE Internet Things J. 2021, 8, 15372–15381. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, Y.; Zhang, S.; Zhao, H.; Chen, Y. A new imaging algorithm for forward-looking missile-borne bistatic SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1543–1552. [Google Scholar] [CrossRef]
- Duan, G.Q.; Wang, D.W.; Ma, X.Y.; Su, Y. Three-dimensional imaging via wideband MIMO radar system. IEEE Geosci. Remote Sens. Lett. 2010, 7, 445–449. [Google Scholar] [CrossRef]
- Bekkerman, I.; Tabrikian, J. Target detection and localization using MIMO radars and sonars. IEEE Trans. Signal Process. 2006, 54, 3873–3883. [Google Scholar] [CrossRef]
- Schindler, D.; Schweizer, B.; Knill, C.; Hasch, J.; Waldschmidt, C. Synthetization of virtual transmit antennas for MIMO OFDM radar by space-time coding. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 1964–1971. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Jiang, W.; Zhuang, Z. MIMO radar sensitivity analysis of antenna position for direction finding. IEEE Trans. Signal Process. 2012, 60, 5201–5216. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, G.; Zhou, Y.; Gao, B.; Pan, S. Towards High-Resolution Imaging With Photonics-Based Time Division Multiplexing MIMO Radar. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–10. [Google Scholar] [CrossRef]
- Song, Y.; Hu, J.; Chu, N.; Jin, T.; Zhang, J.; Zhou, Z. Building layout reconstruction in concealed human target sensing via UWB MIMO through-wall imaging radar. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1199–1203. [Google Scholar] [CrossRef]
- Zhou, L.; Su, Y. GPR imaging with RM algorithm in layered mediums. IEEE Geosci. Remote Sens. Lett. 2011, 8, 934–938. [Google Scholar] [CrossRef]
- Li, X.; Kong, L.; Cui, G.; Yi, W.; Yang, Y. ISAR imaging of maneuvering target with complex motions based on ACCF–LVD. Digital Signal Process. 2015, 46, 191–200. [Google Scholar] [CrossRef]
- Wu, K.; Cui, W.; Xu, X. Superresolution Radar Imaging via Peak Search and Compressed Sensing. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Pan, X.Y.; Wang, W.; Wang, G.Y. Sub-Nyquist sampling jamming against ISAR with CS-based HRRP reconstruction. IEEE Sens. J. 2015, 16, 1597–1602. [Google Scholar] [CrossRef]
- He, C.; Zhuo, T.; Ou, D.; Liu, M.; Liao, M. Nonlinear compressed sensing-based LDA topic model for polarimetric SAR image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 972–982. [Google Scholar] [CrossRef]
- Yang, J.; Jin, T.; Xiao, C.; Huang, X. Compressed sensing radar imaging: Fundamentals, challenges, and advances. Sensors 2019, 19, 3100. [Google Scholar] [CrossRef]
- Zhang, W.; Hoorfar, A. A generalized approach for SAR and MIMO radar imaging of building interior targets with compressive sensing. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1052–1055. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Li, Z.; Dai, Y.; Jin, T. Compressed sensing imaging with compensation of motion errors for MIMO Radar. Remote Sens. 2021, 13, 4909. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X. 3-D imaging based on combination of the ISAR technique and a MIMO radar system. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6033–6054. [Google Scholar] [CrossRef]
- Feng, W.; Friedt, J.M.; Nico, G.; Sato, M. 3-D ground-based imaging radar based on C-band cross-MIMO array and tensor compressive sensing. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1585–1589. [Google Scholar] [CrossRef]
- Hu, X.; Tong, N.; Zhang, Y.; Huang, D. MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5985–5996. [Google Scholar] [CrossRef]
- Miller, M.; Hinze, J.; Saquib, M.; Blanchard, A.J. Adjustable transmitter spacing for MIMO radar imaging with compressed sensing. IEEE Sens. J. 2015, 15, 6671–6677. [Google Scholar] [CrossRef]
- Gu, F.; Chi, L.; Zhang, Q.; Zhu, F. Single snapshot imaging method in multiple-input multiple-output radar with sparse antenna array. IET Radar Sonar Navig. 2013, 7, 535–543. [Google Scholar] [CrossRef]
- Ding, J.; Wang, M.; Kang, H.; Wang, Z. MIMO radar super-resolution imaging based on reconstruction of the measurement matrix of compressed sensing. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Qiu, W.; Zhou, J.; Fu, Q. Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging. IEEE Trans. Image Process. 2019, 29, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.J.; Chen, W.F.; Ma, J.c.; Cheng, Q.; Yang, J.; Ma, X.Y. Enhanced sparse ISAR imaging by jointly using sparsity and low-rank properties. Digital Signal Process. 2021, 118, 103242. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, T.; Meng, H.; Chen, J. Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation. IEEE Geosci. Remote Sens. Lett. 2013, 11, 990–994. [Google Scholar] [CrossRef]
- Zeng, C.; Zhu, W.; Jia, X.; Yang, L. Sparse aperture ISAR imaging method based on joint constraints of sparsity and low rank. IEEE Trans. Geosci. Remote Sens. 2020, 59, 168–181. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, M.; Qiu, C.W.; Li, J.; Sheng, J.; Li, Y.; Bao, Z. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3824–3838. [Google Scholar] [CrossRef]
- Lu, C.; Feng, J.; Yan, S.; Lin, Z. A unified alternating direction method of multipliers by majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lü, X. ADMM for image restoration based on nonlocal simultaneous sparse Bayesian coding. Signal Process. Image Commun. 2019, 70, 157–173. [Google Scholar] [CrossRef]
- Johnston, J.; Li, Y.; Lops, M.; Wang, X. ADMM-net for communication interference removal in stepped-frequency radar. IEEE Trans. Signal Process. 2021, 69, 2818–2832. [Google Scholar] [CrossRef]
- Kwan, C.; Choi, J.H.; Chan, S.H.; Zhou, J.; Budavari, B. A super-resolution and fusion approach to enhancing hyperspectral images. Remote Sens. 2018, 10, 1416. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zhang, Y.; Guo, Y.; He, X. 2D OMP algorithm for space–time parameters estimation of moving targets. Electron. Lett. 2015, 51, 1809–1811. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, X.; Chen, W. Echo preprocessing to enhance SNR for 2D CS-based ISAR imaging method. Sensors 2018, 18, 4409. [Google Scholar] [CrossRef] [Green Version]
- Hashempour, H.R. Sparsity-driven ISAR imaging based on two-dimensional ADMM. IEEE Sens. J. 2020, 20, 13349–13356. [Google Scholar] [CrossRef]
- Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
Carrier Frequency | 35 GHz | Bandwidth | 150 MHz |
lambda | 8.6 mm | Working distance | 3000 m |
Transmitting antennas | 2 | Transmitting antenna spacing | 40.0 mm |
Receiving antennas | 93 | Receiving antenna spacing | 4.3 mm |
Equivalent antennas | 186 | Equivalent antenna spacing | 4.3 mm |
Carrier Frequency | 78.7 GHz |
Bandwidth | 2.5 GHz |
lambda | 3.8 mm |
Transmitting antennas | 12 |
Azimuth transmitting antennas | 9 |
Receiving antennas | 16 |
Azimuth equivalent antennas | 86 |
Method | RMSE | Corr | ||||
---|---|---|---|---|---|---|
10 dB | 5 dB | 0 dB | 10 dB | 5 dB | 0 dB | |
CS | 0.65 | 0.82 | 0.92 | 0.36 | 0.22 | 0.18 |
WCS | 0.60 | 0.75 | 0.80 | 0.52 | 0.48 | 0.46 |
JUSLR | 0.45 | 0.53 | 0.62 | 0.60 | 0.58 | 0.55 |
CSDLR | 0.15 | 0.20 | 0.24 | 0.93 | 0.90 | 0.86 |
Method | BP | CS | WCS | JUSLR | CSDLR |
---|---|---|---|---|---|
Running time (s) | 1.75 | 7.40 | 7.56 | 3.01 | 3.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Liu, Z.; Ran, L.; Xie, R.; Qin, J. Forward-Looking Super-Resolution Imaging of MIMO Radar via Sparse and Double Low-Rank Constraints. Remote Sens. 2023, 15, 609. https://doi.org/10.3390/rs15030609
Tang J, Liu Z, Ran L, Xie R, Qin J. Forward-Looking Super-Resolution Imaging of MIMO Radar via Sparse and Double Low-Rank Constraints. Remote Sensing. 2023; 15(3):609. https://doi.org/10.3390/rs15030609
Chicago/Turabian StyleTang, Junkui, Zheng Liu, Lei Ran, Rong Xie, and Jikai Qin. 2023. "Forward-Looking Super-Resolution Imaging of MIMO Radar via Sparse and Double Low-Rank Constraints" Remote Sensing 15, no. 3: 609. https://doi.org/10.3390/rs15030609
APA StyleTang, J., Liu, Z., Ran, L., Xie, R., & Qin, J. (2023). Forward-Looking Super-Resolution Imaging of MIMO Radar via Sparse and Double Low-Rank Constraints. Remote Sensing, 15(3), 609. https://doi.org/10.3390/rs15030609