Reducing Model Error Effects in El Niño–Southern Oscillation Prediction Using Ensemble Coupled Data Assimilation
Abstract
:1. Introduction
2. Materials and Methods
2.1. LDEO5 Model
2.2. Ensemble Adjustment Kalman Filter
2.3. Data
2.4. Experiments
3. Results
3.1. Data Assimilation Analysis
3.2. ENSO Predictions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyrtki, T. El Nino–the dynamic response of equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr. 1975, 5, 572–583. [Google Scholar] [CrossRef]
- Philander, S.G.; Yamagata, T.; Pacanowski, R.C. Unstable air-sea interactions in the tropica. J. Atmos. Sci. 1984, 41, 604–613. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed action oscillator for ENSO. J. Atmos. Sci. 1988, 5, 3283–3287. [Google Scholar] [CrossRef]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Wallace, J.M.; Rasmusson, E.M.; Mitchell, T.P.; Kousky, V.E.; Sarachik, E.S.; von Storch, H. On the structure and evolution of ENSO-related climate variability in the tropical pacific: Lessons from TOGA. J. Geophys. Res. 1998, 103, 14241–14259. [Google Scholar] [CrossRef]
- Kug, J.S.; Ham, Y.G.; Lee, J.Y.; Jin, F.F. Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett. 2012, 7, 034002. [Google Scholar] [CrossRef]
- Duan, W.S.; Tian, B.; Xu, H. Simulations of two types of El Niño events by an optimal forcing vector approach. Clim. Dyn. 2014, 43, 1677–1692. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.K.; Cane, M.A.; Zebiak, S.; Huang, D.J. Predictability of El Niño over the past 148 years. Nature 2004, 428, 733–736. [Google Scholar] [CrossRef]
- Tao, L.J.; Gao, C.; Zhang, R.H. Model parameter-related optimal perturbations and their contributions to El Niño prediction errors. Clim. Dyn. 2019, 52, 1425–1441. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Liu, T.; Song, X.S.; Shen, Z.Q.; Tang, Y.M.; Chen, D.K. An extension of LDEO5 model for ENSO ensemble predictions. Clim. Dyn. 2020, 55, 2979–2991. [Google Scholar] [CrossRef]
- Zhang, S.Q. Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: A review. Clim. Dyn. 2020, 54, 5127–5144. [Google Scholar] [CrossRef]
- Zebiak, S.E.; Cane, M.A. A model El Niño–southern oscillation. Mon. Wea. Rev. 1987, 115, 2262–2278. [Google Scholar] [CrossRef]
- Latif, M.; Anderson, D.; Barnett, T.; Cane, M.; Kleeman, R.; Leetmaa, A.; O’Brien, A.; Rosati, E.; Schneider, E. A review of the predictability and prediction of ENSO. J. Geophys. Res. 1998, 103, 14375–14393. [Google Scholar] [CrossRef]
- Tang, Y.M.; Hsieh, W.W. Hybrid coupled models of the tropical pacific–ENSO prediction. Clim. Dyn. 2002, 19, 343–353. [Google Scholar] [CrossRef]
- Barnston, A.G.; Tippett, M.K.; L’Heureux, M.L.; Li, S.H.; DeWitt, D.G. Skill of real-time seasonal ENSO model predictions during 2002-11: Is our capability increasing? Bull. Am. Meteorol. Soc. 2012, 93, 631–651. [Google Scholar] [CrossRef]
- Tippett, M.K.; Barnston, A.G.; Li, S.H. Performance of recent multi-model ENSO forecasts. J. Appl. Meteorol. Clim. 2012, 51, 637–654. [Google Scholar] [CrossRef]
- Zhang, R.H.; Gao, C. The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015-16 El Niño event. Sci. Bull. 2016, 66, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.J.; Wang, G.; Dommenget, D. May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Clim. Dyn. 2018, 18, 1335–1351. [Google Scholar] [CrossRef]
- Zhang, R.H.; Yu, Y.Q.; Song, Z.Y.; Ren, H.L.; Tang, Y.M.; Qiao, F.L.; Wu, T.; Gao, C.; Hu, J.; Tian, F.; et al. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J. Oceanol. Limnol. 2020, 38, 930–961. [Google Scholar] [CrossRef]
- Lian, T.; Chen, D.K.; Tang, Y.M. Genesis of the 2014–2016 El Niño events. Sci. China: Earth Sci. 2017, 60, 1589–1600. [Google Scholar] [CrossRef] [Green Version]
- Mu, M.; Xu, H.; Duan, W.S. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett. 2007, 34, L03709. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Sandery, P.A.; Monselesan, D.P.; Sakov, P.; Stevens, L. Coupled data assimilation and ensemble initialization with application to multiyear ENSO prediction. J. Clim. 2019, 32, 997–1024. [Google Scholar] [CrossRef]
- Latif, M.; Sperber, K.; Arblaster, J.; Braconnot, P.; Chen, D.; Colman, A.; Cusbach, U.; Cooper, C.; Delecluse, P.; Dewitt, D.; et al. ENSIP: The El Niño simulation intercomparison project. Clim. Dyn. 2001, 18, 55–276. [Google Scholar] [CrossRef] [Green Version]
- Stainforth, D.A.; Aina, T.; Christensen, C.; Collins, M.; Faull, N.; Frame, D.J.; Kattleborough, J.A.; Knight, A.; Martin, A.; Murphy, J.M.; et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 2005, 433, 403–406. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, H.; Zhu, J. ENSO ensemble prediction: Initial error perturbations vs. model error perturbations. Chin. Sci. Bull. 2009, 54, 2516–2523. [Google Scholar] [CrossRef]
- Wu, X.R.; Han, G.J.; Zhang, S.Q.; Liu, Z.Y. A study of the impact of parameter optimization on ENSO predictability with an intermediate coupled model. Clim. Dyn. 2016, 46, 711–727. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Liu, Z.Y.; Zheng, F.; Jin, Y.S. Parameter optimization for real-world ENSO forecast in an intermediate coupled model. Mon. Wea. Rev. 2019, 147, 1429–1445. [Google Scholar] [CrossRef]
- Roads, J.O. Predictability in the extended range. J. Atmos. Sci. 1987, 44, 3495–3527. [Google Scholar] [CrossRef]
- Kleeman, R.; Moore, A.M. A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci. 1997, 54, 753–767. [Google Scholar] [CrossRef]
- Tang, Y.M.; Deng, Z.W.; Zhou, X.B.; Cheng, Y.J.; Chen, D.K. Interdecadal variation of ENSO predictability in multiple models. J. Clim. 2008, 21, 4811–4833. [Google Scholar] [CrossRef]
- Liu, T.; Tang, Y.M.; Yang, D.J.; Cheng, Y.J.; Song, X.S.; Hou, Z.L.; Shen, Z.; Gao, Y.; Wu, Y.; Li, X.; et al. The relationship among probabilistic, deterministic and potential skills in predicting the ENSO for the past 161 years. Clim. Dyn. 2019, 53, 6947–6960. [Google Scholar] [CrossRef] [Green Version]
- Barkmeijer, J.; Iversen, T.; Palmer, T.N. Forcing singular vectors and other sensitive model structures. Quart. J. Roy. Meteor. Soc. 2003, 129, 2401–2423. [Google Scholar] [CrossRef]
- Duan, W.S.; Zhou, F.F. Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 18420–18452. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.S.; Zhao, P.; Hu, J.Y.; Xu, H. The role of nonlinear forcing singular vector tendency error in causing the ‘‘spring predictability barrier’’ for ENSO. J. Meteor. Res. 2016, 30, 853–866. [Google Scholar] [CrossRef]
- Tao, L.J.; Duan, W.S. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Weather Forecast. 2019, 34, 1321–1342. [Google Scholar] [CrossRef]
- Aksoy, A.; Zhang, F.Q.; Nielsen-Gammon, J.W. Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett. 2006, 33, L12801. [Google Scholar] [CrossRef] [Green Version]
- Sluka, T.C.; Penny, S.G.; Kalnay, E.; Miyoshi, T. Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett. 2016, 43, 752–759. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.Q.; Tang, Y.M.; Song, X.S.; Shen, Z.Q. Parameter estimation based on a local ensemble transform Kalman filter applied to El Niño–Southern Oscillation ensemble prediction. Remote Sens. 2021, 13, 3923. [Google Scholar] [CrossRef]
- Cane, M.A.; Zebiak, S.E. A theory for El Niño and the southern oscillation. Science 1985, 228, 1085–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cane, M.A.; Zebiak, S.E.; Dolan, S.C. Experimental forecasts of EI Niño. Nature 1986, 321, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.K.; Cane, M.A.; Zebiak, S.E.; Kaplan, A. The impact of sea level data assimilation on the lamont model prediction of the 1997/98 El Niño. Geophys. Res. Lett. 1998, 25, 2837–2840. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Tang, Y.M.; Jackson, P.; Chen, D.K.; Deng, Z.W. Ensemble construction and verification of the probabilistic enso prediction in the ldeo5 model. J. Clim. 2010, 23, 5476–5497. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Anderson, J.L. A local least squares framework for ensemble filtering. Mon. Wea. Rev. 2003, 131, 634–642. [Google Scholar] [CrossRef]
- Tang, Y.M.; Shen, Z.Q.; Gao, Y.Q. An introduction to ensemble-based data assimilation method in the earth sciences (book chapter). In Nonlinear Systems -Design, Analysis, Estimation and Control; Intech Press: London, UK, 2016. [Google Scholar] [CrossRef]
- Anderson, J.L. An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev. 2001, 129, 2884–2903. [Google Scholar] [CrossRef]
- Hansen, J.A.; Penland, C. On stochastic parameter estimation using data assimilation. Physica. D 2007, 230, 88–98. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Liu, Z.Y.; Rosati, A.; Delworth, T. A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus 2012, 63, 10963. [Google Scholar] [CrossRef]
- Kaplan, A.; Cane, M.; Kushnir, Y.; Clement, A.; Blumenthal, M.; Rajagopalan, B. Analyses of global sea surface temperature 1856-1991. J. Geophys. Res. 1998, 103, 567–589. [Google Scholar] [CrossRef] [Green Version]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.; et al. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.; Cao, X.H.; Giese, B. Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr. 2000, 30, 294–309. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L.; Anderson, S.L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev. 1999, 127, 2741–2758. [Google Scholar] [CrossRef]
- El Gharamti, M.; Raeder, K.; Anderson, J. Comparing adaptive prior and posterior inflation for ensemble filters using an atmospheric general circulation model. Mon. Wea. Rev. 2019, 147, 2535–2553. [Google Scholar] [CrossRef]
- Gaspari, G.; Cohn, S.E. Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc. 1999, 125, 723–757. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003; pp. 185–198. ISBN 9780521796293. [Google Scholar]
- Li, Y.; Chen, X.R.; Jing, T.; Huang, Y.Y.; Cai, Y. An ENSO hindcast experiment using CESM. Acta Oceanol. Sin. 2015, 37, 39–50. [Google Scholar] [CrossRef]
- Ren, H.L.; Jin, F.F.; Song, L.B.; Lu, B.; Tian, J.; Zuo, Q.; Liu, Y.; Wu, J.; Zhao, C.; Nie, Y.; et al. Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteorol. Res. 2017, 31, 204–223. [Google Scholar] [CrossRef]
- Wu, X.R.; Zhang, S.Q.; Liu, Z.Y.; Rosati, A.; Delworth, T.; Liu, Y. Impact of geographic-dependent parameter optimization on climate estimation and prediction: Simulation with an intermediate coupled model. Mon. Wea. Rev. 2012, 140, 3956–3971. [Google Scholar] [CrossRef]
- Wu, X.R.; Zhang, S.Q.; Liu, Z.Y.; Rosati, A.; Delworth, T.L. A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model. Clim. Dyn. 2013, 40, 1789–1798. [Google Scholar] [CrossRef]
- Ait El Fquih, B.; Hoteit, I.A. Particle-filter based adaptive inflation scheme for the ensemble Kalman filter. Quart. J. Roy. Meteor. Soc. 2019, 146, 922–937. [Google Scholar] [CrossRef]
- Li, H.; Kalnay, E.; Miyoshi, T. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc. 2009, 135, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.G. An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation. Adv. Atmos. Sci. 2009, 26, 154–160. [Google Scholar] [CrossRef]
- Miyoshi, T. The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev. 2011, 139, 1519–1535. [Google Scholar] [CrossRef]
- El Gharamti, M. Enhanced adaptive inflation algorithm for ensemble filters. Mon. Wea. Rev. 2018, 146, 623–640. [Google Scholar] [CrossRef]
Scheme | Assimilation Method | Adjustment Variables | Members |
---|---|---|---|
Ori-Assim | Replaced by observations | SSTA | 1 |
EAKF-Assim | EAKF | SSTA | 30 |
EAKF_F-Assim | EAKF | SSTA and | 30 |
Scheme | Initialized by | With | Members |
---|---|---|---|
Ori-Pred | Ori-Assim | No | 1 |
EAKF-Pred | EAKF-Assim | No | 30 |
EAKF_F-Pred | EAKF_F-Assim | Yes | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Tang, Y.; Liu, T. Reducing Model Error Effects in El Niño–Southern Oscillation Prediction Using Ensemble Coupled Data Assimilation. Remote Sens. 2023, 15, 762. https://doi.org/10.3390/rs15030762
Gao Y, Tang Y, Liu T. Reducing Model Error Effects in El Niño–Southern Oscillation Prediction Using Ensemble Coupled Data Assimilation. Remote Sensing. 2023; 15(3):762. https://doi.org/10.3390/rs15030762
Chicago/Turabian StyleGao, Yanqiu, Youmin Tang, and Ting Liu. 2023. "Reducing Model Error Effects in El Niño–Southern Oscillation Prediction Using Ensemble Coupled Data Assimilation" Remote Sensing 15, no. 3: 762. https://doi.org/10.3390/rs15030762
APA StyleGao, Y., Tang, Y., & Liu, T. (2023). Reducing Model Error Effects in El Niño–Southern Oscillation Prediction Using Ensemble Coupled Data Assimilation. Remote Sensing, 15(3), 762. https://doi.org/10.3390/rs15030762