Next Article in Journal
An Efficient and Robust Hybrid SfM Method for Large-Scale Scenes
Previous Article in Journal
Spatio-Temporal Changes in Water Use Efficiency and Its Driving Factors in Central Asia (2001–2021)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Using Pre-Fire High Point Cloud Density LiDAR Data to Predict Fire Severity in Central Portugal

by
José Manuel Fernández-Guisuraga
1,2,* and
Paulo M. Fernandes
1,3
1
Centro de Investigação e de Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
2
Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain
3
ForestWISE—Collaborative Laboratory for Integrated Forest and Fire Management, Quinta de Prados, 5001-801 Vila Real, Portugal
*
Author to whom correspondence should be addressed.
Remote Sens. 2023, 15(3), 768; https://doi.org/10.3390/rs15030768
Submission received: 28 December 2022 / Revised: 23 January 2023 / Accepted: 24 January 2023 / Published: 29 January 2023
(This article belongs to the Section Forest Remote Sensing)

Abstract

The wall-to-wall prediction of fuel structural characteristics conducive to high fire severity is essential to provide integrated insights for implementing pre-fire management strategies designed to mitigate the most harmful ecological effects of fire in fire-prone plant communities. Here, we evaluate the potential of high point cloud density LiDAR data from the Portuguese áGiLTerFoRus project to characterize pre-fire surface and canopy fuel structure and predict wildfire severity. The study area corresponds to a pilot LiDAR flight area of around 21,000 ha in central Portugal intersected by a mixed-severity wildfire that occurred one month after the LiDAR survey. Fire severity was assessed through the differenced Normalized Burn Ratio (dNBR) index computed from pre- and post-fire Sentinel-2A Level 2A scenes. In addition to continuous data, fire severity was also categorized (low or high) using appropriate dNBR thresholds for the plant communities in the study area. We computed several metrics related to the pre-fire distribution of surface and canopy fuels strata with a point cloud mean density of 10.9 m−2. The Random Forest (RF) algorithm was used to evaluate the capacity of the set of pre-fire LiDAR metrics to predict continuous and categorized fire severity. The accuracy of RF regression and classification model for continuous and categorized fire severity data, respectively, was remarkably high (pseudo-R2 = 0.57 and overall accuracy = 81%) considering that we only focused on variables related to fuel structure and loading. The pre-fire fuel metrics with the highest contribution to RF models were proxies for horizontal fuel continuity (fractional cover metric) and the distribution of fuel loads and canopy openness up to a 10 m height (density metrics), indicating increased fire severity with higher surface fuel load and higher horizontal and vertical fuel continuity. Results evidence that the technical specifications of LiDAR acquisitions framed within the áGiLTerFoRus project enable accurate fire severity predictions through point cloud data with high density.
Keywords: density metrics; fractional cover; fuel load; laser scanning; wildfire density metrics; fractional cover; fuel load; laser scanning; wildfire
Graphical Abstract

Share and Cite

MDPI and ACS Style

Fernández-Guisuraga, J.M.; Fernandes, P.M. Using Pre-Fire High Point Cloud Density LiDAR Data to Predict Fire Severity in Central Portugal. Remote Sens. 2023, 15, 768. https://doi.org/10.3390/rs15030768

AMA Style

Fernández-Guisuraga JM, Fernandes PM. Using Pre-Fire High Point Cloud Density LiDAR Data to Predict Fire Severity in Central Portugal. Remote Sensing. 2023; 15(3):768. https://doi.org/10.3390/rs15030768

Chicago/Turabian Style

Fernández-Guisuraga, José Manuel, and Paulo M. Fernandes. 2023. "Using Pre-Fire High Point Cloud Density LiDAR Data to Predict Fire Severity in Central Portugal" Remote Sensing 15, no. 3: 768. https://doi.org/10.3390/rs15030768

APA Style

Fernández-Guisuraga, J. M., & Fernandes, P. M. (2023). Using Pre-Fire High Point Cloud Density LiDAR Data to Predict Fire Severity in Central Portugal. Remote Sensing, 15(3), 768. https://doi.org/10.3390/rs15030768

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop