Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam
Abstract
:1. Introduction
2. Watershed
3. Data and Methods
3.1. The Rainfall Assessment Framework (RAF) for SPPs
3.2. In Situ Data
3.3. DEM, Land-Use, and Soil
3.4. Satellite-Based Precipitation Products
3.4.1. GPM IMERG Final Run V06
3.4.2. MSWEP V2.2
3.4.3. SM2RAIN–ASCAT V1.5
3.5. SWAT Model
3.6. Performance Metrics
4. Results
4.1. Comparison of Characteristics between Rain Gauges and SPP Products
4.1.1. Evaluation of Annual and Seasonal Rainfall Distributions
4.1.2. Detection Metrics Assessment
4.1.3. Temporal Dynamic Metrics Assessment
4.1.4. Rainy-Days Detection
4.2. Streamflow Simulation Driven by SPPs and Rain Gauges
4.3. Other Hydrological Outputs at the SRB Outlet
4.4. Limitations and the Need for Further Studies
5. Conclusions
- For the intercomparison, IMERGF-V6 showed the highest correlation with the CC values of about 0.65 for the annual rainfall, while it is lowest during the wet and dry seasons (median CC of 0.53). For the hydrological application, IMERGF-V6 achieved the highest accuracy for streamflow simulation (i.e., daily and monthly) among the chosen SPPs (IMERGF-V6, MSWEP, and SM2RAIN–ASCAT) compared to rain-gauge-driven simulations. IMERGF-V6 showed a good performance in estimating the annual and seasonal streamflow after rain-gauge-driven simulations, followed by SM2RAIN–ASCAT and MSWEP. Regarding flood peak prediction, IMERGF-V6 showed high similarities compared to rain gauges. Our study made the second attempt after [13] to evaluate the performance of GPM IMERG in the Central Highlands of Vietnam, suggesting that this product is well-suited for hydrological applications, especially for high-land regions of the SRB and is recommended for continued usage in the context of reservoirs and dams.
- Our study made the first attempt to assess the MSWEP product for the Vietnam basin, in which MSWEP showed the worst performance compared to other SPPs. Key findings indicated that this product over- and underestimated the flood peaks in many extreme rainfall events, especially under the impacts of reservoirs. MSWEP showed discrepancies during the dry and wet seasons, exhibiting very low correlation compared to rain gauges when the precipitation intensity is greater than 15 mm/day, which could be explained by the low density of rain gauges in the SRB region [1,28], resulting in low gauge reporting times that affect the quality of MSWEP in the SRB.
- This study is the first attempt to evaluate the SM2RAIN–ASCAT product for the Vietnam Basin. Results indicated that SM2RAIN–ASCAT was ranked as the second best product after the rain gauge and IMERGF-V6, exhibiting a potential development in the future for Vietnam high-land regions. However, it fails to estimate rainfall under highly saturated soil conditions, in which the rainfall retrieval algorithm can be affected by SM [29]. It implies SM2RAIN–ASCAT remarkably overestimated the wet season rainfall (RB value of 234.4%) and underestimated the dry season rainfall (RB value of −11.2%), especially when the rainfall intensity was greater than 20 mm/day. However, SM2RAIN–ASCAT had the lowest PBIAS score during the dry season, indicating the product’s usefulness for trend analysis and drought detection, similar to CHIRPS in previous works by [13,83,102]. This study suggests using these findings as the reference for further improvements of this product’s algorithm, which would also benefit the SM2RAIN–CCI product because of similar rainfall retrieval problems [30,94] for mountainous regions.
- The SPP products performed slightly better regarding rainfall detection metrics during the wet season than during the dry season, using detection and temporal dynamic metrics. In Central Highland Vietnam, the temporal dynamics of SPPs were not significantly different between the two seasons in this study.
- The Rainfall Assessment Framework (RAF) showed good performance throughout this study in evaluating the performance of SPPs comprehensively using different terms of assessment (i.e., the spatial distribution of rainfall, decision and temporal dynamic metrics, rainy days detection, flood peak prediction, etc.). Thus, this framework could be used as a good reference framework for other studies and could be further developed for different case studies based on their characteristics (i.e., climate, land-use, land cover, and topography).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Newly Built Reservoirs Set up for the SWAT Model
References
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling. Hydrol. Earth Syst. Sci. 2020, 21, 625–653. [Google Scholar] [CrossRef]
- Ji, X.; Li, Y.; Luo, X.; He, D.; Guo, R.; Wang, J.; Bai, Y.; Yue, C.; Liu, C. Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmos. Res. 2020, 242, 104964. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Zeeshan, A.; Tran, T.N.D.; Nguyen, Q.B. Applying semi distribution Hydrological Model To Assess Hydrological Regime in Lai Giang catchment, Binh Dinh Province, Vietnam. In 2nd Conference on Sustainability in Civil Engineering (CSCE) 2020; Capital University of Science and Technology: Islamabad, Pakistan, 2021; Available online: https://csce.cust.edu.pk/archive/20-404.pdf (accessed on 20 June 2022).
- Ren, P.; Li, J.; Feng, P.; Guo, Y.; Ma, Q. Evaluation of Multiple Satellite Precipitation Products and Their Use in Hydrological Modelling over the Luanhe River Basin, China. Water 2018, 10, 677. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Mondal, A.; Lakshmi, V.; Hashemi, H. Intercomparison of trend analysis of Multisatellite Monthly Precipitation Products and Gauge Measurements for River Basins of India. J. Hydrol. 2018, 565, 779–790. [Google Scholar] [CrossRef]
- Anjum, M.N.; Irfan, M.; Waseem, M.; Leta, M.K.; Niazi, U.M.; Rahman, S.U.; Ghanim, A.; Mukhtar, M.A.; Nadeem, M.U. Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 Rainfall Products over a Semi-Arid Subtropical Climatic Region. Water 2022, 14, 147. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yang, D.; Bin Farhan, S. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int. J. Climatol. 2015, 35, 1201–1211. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Clim. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Le, M.-H.; Lakshmi, V.; Bolten, J.; Du Bui, D. Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Duethmann, D.; Zimmer, J.; Gafurov, A.; Güntner, A.; Kriegel, D.; Merz, B.; Vorogushyn, S. Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrol. Earth Syst. Sci. 2013, 17, 2415–2434. [Google Scholar] [CrossRef]
- Plengsaeng, B.; Wehn, U.; Van Der Zaag, P. Data-sharing bottlenecks in transboundary integrated water resources management: A case study of the Mekong River Commission’s procedures for data sharing in the Thai context. Water Int. 2014, 39, 933–951. [Google Scholar] [CrossRef]
- Gerlak, A.K.; Lautze, J.; Giordano, M. Water resources data and information exchange in transboundary water treaties. Int. Environ. Agreem. Politi-Law Econ. 2010, 11, 179–199. [Google Scholar] [CrossRef]
- Li, H.; Haugen, J.E.; Xu, C.-Y. Precipitation pattern in the Western Himalayas revealed by four datasets. Hydrol. Earth Syst. Sci. 2018, 22, 5097–5110. [Google Scholar] [CrossRef]
- Luo, X.; Wu, W.; He, D.; Li, Y.; Ji, X. Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin. Chin. Geogr. Sci. 2019, 29, 13–25. [Google Scholar] [CrossRef]
- Sunilkumar, K.; Yatagai, A.; Masuda, M. Preliminary Evaluation of GPM-IMERG Rainfall Estimates Over Three Distinct Climate Zones With APHRODITE. Earth Sp. Sci. 2019, 6, 1321–1335. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Z.; Wang, F.; He, H.; Zhou, J.; Wu, X.; Liu, Z. Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China. Remote Sens. 2018, 10, 840. [Google Scholar] [CrossRef]
- Yatagai, A.; Arakawa, O.; Kamiguchi, K.; Kawamoto, H.; Nodzu, M.I.; Hamada, A. A 44-Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Sola 2009, 5, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Fayne, J.V.; Bolten, J.D.; Doyle, C.S.; Fuhrmann, S.; Rice, M.T.; Houser, P.R.; Lakshmi, V. Flood mapping in the lower Mekong River Basin using daily MODIS observations. Int. J. Remote Sens. 2017, 38, 1737–1757. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Brocca, L.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; Schüller, L.; Bojkov, B.; Wagner, W. SM2RAIN–ASCAT (2007–2018): Global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst. Sci. Data 2019, 11, 1583–1601. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Z.; He, H.; Wu, X.; Zhou, J.; Zhang, Y.; Guo, X. Evaluating the accuracy of MSWEP V2.1 and its performance for drought monitoring over mainland China. Atmos. Res. 2019, 226, 17–31. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; De Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Performance Assessment of SM2RAIN-CCI and SM2RAIN-ASCAT Precipitation Products over Pakistan. Remote Sens. 2019, 11, 2040. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W. A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett. 2013, 40, 853–858. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Spatafora, L.R. Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil. Remote Sens. 2018, 10, 1093. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.; dos Santos, C.A.C. Evaluation of the Performance of SM2RAIN-Derived Rainfall Products over Brazil. Remote Sens. 2019, 11, 1113. [Google Scholar] [CrossRef]
- Van Ty, T.; Sunada, K.; Ichikawa, Y.; Oishi, S. Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia. Water Resour. Manag. 2012, 26, 1387–1407. [Google Scholar] [CrossRef]
- Van Ty, T.; Sunada, K.; Ichikawa, Y. A spatial impact assessment of human-induced intervention on hydrological regimes: A case study in the upper Srepok River basin, Central Highlands of Vietnam. Int. J. River Basin Manag. 2011, 9, 103–116. [Google Scholar] [CrossRef]
- Le, M.-H.; Kim, H.; Moon, H.; Zhang, R.; Lakshmi, V.; Nguyen, L.-B. Assessment of drought conditions over Vietnam using standardized precipitation evapotranspiration index, MERRA-2 re-analysis, and dynamic land cover. J. Hydrol. Reg. Stud. 2020, 32, 100767. [Google Scholar] [CrossRef]
- Van Binh, D.; Kantoush, S.A.; Saber, M.; Mai, N.P.; Maskey, S.; Phong, D.T.; Sumi, T. Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2020, 32, 100742. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Null, S.E.; Farshid, A.; Goodrum, G.; Gray, C.A.; Lohani, S.; Morrisett, C.N.; Prudencio, L.; Sor, R. A Meta-Analysis of Environmental Tradeoffs of Hydropower Dams in the Sekong, Sesan, and Srepok (3S) Rivers of the Lower Mekong Basin. Water 2021, 13, 63. [Google Scholar] [CrossRef]
- Piman, T.; Cochrane, T.A.; Arias, M.E. Effect of Proposed Large Dams on Water Flows and Hydropower Production in the Sekong, Sesan and Srepok Rivers of the Mekong Basin. River Res. Appl. 2016, 32, 2095–2108. [Google Scholar] [CrossRef]
- Arias, M.E.; Cochrane, T.A.; Kummu, M.; Lauri, H.; Holtgrieve, G.W.; Koponen, J.; Piman, T. Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Model. 2014, 272, 252–263. [Google Scholar] [CrossRef]
- Piman, T.; Lennaerts, T.; Southalack, P. Assessment of hydrological changes in the lower Mekong Basin from Basin-Wide development scenarios. Hydrol. Process. 2013, 27, 2115–2125. [Google Scholar] [CrossRef]
- Cochrane, T.A.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef]
- Le, H.M.; Sutton, J.R.P.; Du Bui, D.; Bolten, J.D.; Lakshmi, V. Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote. Sens. 2018, 10, 1582. [Google Scholar] [CrossRef]
- Nhi, P.T.T.; Khoi, D.N.; Hoan, N.X. Evaluation of five gridded rainfall datasets in simulating streamflow in the upper Dong Nai river basin, Vietnam. Int. J. Digit. Earth 2018, 12, 311–327. [Google Scholar] [CrossRef]
- Thom, V.T.; Khoi, D.N.; Linh, D.Q. Using gridded rainfall products in simulating streamflow in a tropical catchment—A case study of the Srepok River Catchment, Vietnam. J. Hydrol. Hydromechanics 2016, 65, 18–25. [Google Scholar] [CrossRef]
- Tran, T.-N.; Nguyen, Q.B.; Vo, N.D.; Marshall, R.; Gourbesville, P. Assessment of Terrain Scenario Impacts on Hydrological Simulation with SWAT Model. Application to Lai Giang Catchment, Vietnam. In Advances in Hydroinformatics: Models for Complex and Global Water Issues—Practices and Expectations; Springer: Singapore, 2022; pp. 1205–1222. [Google Scholar] [CrossRef]
- Trinh-Tuan, L.; Matsumoto, J.; Ngo-Duc, T.; Nodzu, M.I.; Inoue, T. Evaluation of satellite precipitation products over Central Vietnam. Prog. Earth Planet. Sci. 2019, 6, 54. [Google Scholar] [CrossRef]
- Vu, M.T.; Raghavan, S.V.; Liong, S.Y. SWAT use of gridded observations for simulating Runoff—A Vietnam river basin study. Hydrol. Earth Syst. Sci. 2012, 16, 2801–2811. [Google Scholar] [CrossRef]
- Le, M.-H.; Nguyen, B.Q.; Pham, H.T.; Patil, A.; Do, H.X.; Ramsankaran, R.; Bolten, J.D.; Lakshmi, V. Assimilation of SMAP Products for Improving Streamflow Simulations over Tropical Climate Region—Is Spatial Information More Important Than Temporal Information? Remote. Sens. 2022, 14, 1607. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V.; Kwon, Y.; Kumar, S.V. First attempt of global-scale assimilation of subdaily scale soil moisture estimates from CYGNSS and SMAP into a land surface model. Environ. Res. Lett. 2021, 16, 074041. [Google Scholar] [CrossRef]
- Nguyen, D.; Nguyen, T. Climate and Climate Resources in Vietnam; Agricultural Publishing House: Rome, Italy, 2004. (In Vietnamese) [Google Scholar]
- MRC. Social Atlas of the Lower Mekong Basin Atlas prepared by the MRC Basin Development Plan. March. 2003. Available online: www.mrcmekong.org (accessed on 21 January 2022).
- Spruce, J.; Bolten, J.; Mohammed, I.N.; Srinivasan, R.; Lakshmi, V. Mapping Land Use Land Cover Change in the Lower Mekong Basin From 1997 to 2010. Front. Environ. Sci. 2020, 8, 21. [Google Scholar] [CrossRef]
- He, F.; Bremerich, V.; Zarfl, C.; Geldmann, J.; Langhans, S.D.; David, J.N.W.; Darwall, W.; Tockner, K.; Jähnig, S.C. Freshwater megafauna diversity: Patterns, status and threats. Divers. Distrib. 2018, 24, 1395–1404. [Google Scholar] [CrossRef]
- He, F.; Thieme, M.; Zarfl, C.; Grill, G.; Lehner, B.; Hogan, Z.; Tockner, K.; Jähnig, S.C. Impacts of loss of free-flowing rivers on global freshwater megafauna. Biol. Conserv. 2021, 263, 109335. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Kahil, T.; Parkinson, S.; Satoh, Y.; Greve, P.; Burek, P.; Veldkamp, T.I.E.; Burtscher, R.; Byers, E.; Djilali, N.; Fischer, G.; et al. A Continental-Scale Hydroeconomic Model for Integrating Water-Energy-Land Nexus Solutions. Water Resour. Res. 2018, 54, 7511–7533. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Richards, K.S.; Parker, G.T.; McRobie, A.; Mukhopadhyay, B. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. J. Hydrol. 2014, 509, 442–453. [Google Scholar] [CrossRef]
- Mohammed, I.N.; Bolten, J.D.; Srinivasan, R.; Lakshmi, V. Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sens. 2018, 10, 885. [Google Scholar] [CrossRef]
- Mohammed, I.N.; Bolten, J.D.; Srinivasan, R.; Meechaiya, C.; Spruce, J.P.; Lakshmi, V. Ground and satellite based observation datasets for the Lower Mekong River Basin. Data Br. 2018, 21, 2020–2027. [Google Scholar] [CrossRef]
- Mohammed, I.N.; Bolten, J.D.; Srinivasan, R.; Lakshmi, V. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. J. Hydrol. 2018, 564, 559–573. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.O.; van Velthuizen, H.; Chiozza, F.; Francheschini, G.; Henry, M.; Muchoney, D.; Tramberend, S. Global Agro-Ecological Zone V4–Model Documentation; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Liu, J.; Shangguan, D.; Liu, S.; Ding, Y.; Wang, S.; Wang, X. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981–2015. Atmospheric Res. 2019, 230, 104634. [Google Scholar] [CrossRef]
- Chiaravalloti, F.; Brocca, L.; Procopio, A.; Massari, C.; Gabriele, S. Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy. Atmos. Res. 2018, 206, 64–74. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Tran, T.-N.; Nguyen, B.Q.; Vo, N.D.; Le, M.-H.; Nguyen, Q.-D.; Lakshmi, V.; Bolten, J.D. Quantification of global Digital Elevation Model (DEM)—A case study of the newly released NASADEM for a river basin in Central Vietnam. J. Hydrol. Reg. Stud. 2023, 45, 101282. [Google Scholar] [CrossRef]
- Mondal, A.; Le, M.-H.; Lakshmi, V. Land use, climate, and water change in the Vietnamese Mekong Delta (VMD) using earth observation and hydrological modeling. J. Hydrol. Reg. Stud. 2022, 42, 101132. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Edwards, D.R.; Yu, Y.; Hamidisepehr, A. An Assessment of Climate Change Impacts on Future Water Availability and Droughts in the Kentucky River Basin. Environ. Process. 2017, 4, 477–507. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena 2021, 201, 105199. [Google Scholar] [CrossRef]
- Vo, N.D.; Nguyen, T.H.; Vu, H.C.; Gourbesville, P.; Nguyen, Q.B. Effects of Climate Change on Streamflow in Kon—Ha Thanh River Watershed, Vietnam. HIC 2018, 3, 2233–2240. [Google Scholar] [CrossRef]
- Xu, F.; Dong, G.; Wang, Q.; Liu, L.; Yu, W.; Men, C.; Liu, R. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model. J. Hydrol. 2016, 540, 355–367. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Park, S.; Nielsen, A.; Bailey, R.T.; Trolle, D.; Bieger, K. A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environ. Model. Softw. 2018, 111, 493–497. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar] [CrossRef]
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef]
- Gautam, S.; Dahal, V.; Bhattarai, R. Impacts of Dem Source, Resolution and Area Threshold Values on SWAT Generated Stream Network and Streamflow in Two Distinct Nepalese Catchments. Environ. Process. 2019, 6, 597–617. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Fu, H.; Zhu, L.; Nzabarinda, V.; Lv, X.; Guo, H. Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China. Atmosphere 2022, 13, 1211. [Google Scholar] [CrossRef]
- Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the State-Of-The-Art Gridded Precipitation Products over Mountainous Terrain: A Regional Study over Austria. Remote Sens. 2019, 11, 2018. [Google Scholar] [CrossRef]
- Kumar, S.; Amarnath, G.; Ghosh, S.; Park, E.; Baghel, T.; Wang, J.; Pramanik, M.; Belbase, D. Assessing the Performance of the Satellite-Based Precipitation Products (SPP) in the Data-Sparse Himalayan Terrain. Remote Sens. 2022, 14, 4810. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. Nasa/Gsfc Code 2017, 612, 1–54. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 4.5. November 26. 2015. Available online: https://pmm.nasa.gov/sites/default/files/imce/times_allsat.jpg%0Ahttps://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf%0Ahttps://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf (accessed on 7 January 2022).
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Prakash, S. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. J. Hydrol. 2019, 571, 50–59. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Liu, P.-W. Evaluation and validation of a high spatial resolution satellite soil moisture product over the Continental United States. J. Hydrol. 2020, 588, 125043. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.; Bindlish, R.; Jackson, T.J. A global 1-km downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Cosh, M.; Basara, J. Passive Microwave Soil Moisture Downscaling Using Vegetation Index and Skin Surface Temperature. Vadose Zone J. 2013, 12, 21–40. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V. Soil moisture at watershed scale: Remote sensing techniques. J. Hydrol. 2014, 516, 258–272. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. Downscaling of SMAP Soil Moisture Using Land Surface Temperature and Vegetation Data. Vadose Zone J. 2018, 17, 1–15. [Google Scholar] [CrossRef]
- Dandridge, C.; Fang, B.; Lakshmi, V. Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin. Water 2019, 12, 56. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Wang, G.; Yang, Q.; Yang, Y.; Guan, T.; Liu, C.; Jin, J.; Liu, Y.; Bao, Z. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin. Chin. Geogr. Sci. 2019, 29, 37–57. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, Q.; Zhang, X.; Huang, M.; Adam, J.C.; Malek, K. Implications of water management representations for watershed hydrologic modeling in the Yakima River basin. Hydrol. Earth Syst. Sci. 2019, 23, 35–49. [Google Scholar] [CrossRef]
- Kim, H.; Parajuli, P.B. Impacts of Reservoir Outflow Estimation Methods in SWAT Model Calibration. Trans. ASABE 2014, 57, 1029–1042. [Google Scholar] [CrossRef]
- Arnold, J.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.; Neitsch, S. Swat Input Data. Res. (Chapter 29); Texas Water Resources Institute. 2012, pp. 393–406. Available online: https://swat.tamu.edu/docs/ (accessed on 20 July 2022).
Product | Temporal Coverage | Resolution | Spatial Coverage | Temporal Resolution | Latency | References |
---|---|---|---|---|---|---|
IMERGF–V6 | 2000–2021 | 0.1° | 65°N–65°S | ½ h | Months | Hou et al. (2014) |
MSWEP V2.2 | 1979–present | 0.1° | 60°N–60°S | 3 h | Days | Beck et al. (2019) |
SM2RAIN–ASCAT V1.5 | 2007–present | 0.1° | 60°N–60°S (land) | Daily | N/A | Brocca et al. (2019) |
ID | Parameter | Method | Description | Range |
---|---|---|---|---|
1 | CN2.mgt | Relative | SCS runoff curve number f | −0.25–0.25 |
2 | ALPHA_BF.gw | Replace | Baseflow alpha factor for bank storage | 0–1 |
3 | GW_DELAY.gw | Replace | Groundwater delay (days) | 0–500 |
4 | GWQMN.gw | Replace | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0–5000 |
5 | GWHT.gw | Replace | Initial groundwater height (m) | 0–1 |
6 | RCHRG_DP.gw | Replace | Deep aquifer percolation fraction | 0–1 |
7 | GW_REVAP.gw | Replace | Groundwater “revap” coefficient | 0.02–0.2 |
8 | REVAPMN.gw | Replace | Percolation to the deep aquifer to occur (mm. H2O) | 0–1000 |
9 | ESCO.hru | Replace | Soil evaporation compensation factor | 0–1 |
10 | EPCO.hru | Replace | Plant uptake compensation factor | 0–1 |
11 | HRU_SLP.hru | Relative | Average slope steepness | −0.25–0.25 |
12 | SLSUBBSN.hru | Relative | Average slope length | −0.25–0.25 |
13 | CANMX.hru | Replace | Maximum canopy storage | 0–25 |
14 | OV_N.hru | Replace | Manning’s “n” value for overland flow | 0.01–1 |
15 | LAT_TTIME.hru | Replace | Lateral flow travel time | 0–180 |
16 | CH_N2.rte | Replace | Manning’s “n” value for the main channel | 0–0.3 |
17 | CH_K2.rte | Replace | Effective hydraulic conductivity in main channel alluvium | 0–500 |
18 | ALPHA_BNK.rte | Replace | Baseflow alpha factor for bank storage | 0–1 |
19 | SOL_AWC(.).sol | Relative | Available water capacity of the soil layer | −0.25–0.25 |
20 | SOL_K(.).sol | Relative | Saturated hydraulic conductivity | −0.25–0.25 |
21 | SOL_BD(.).sol | Relative | Moist bulk density | −0.25–0.25 |
22 | SOL_Z(.).sol | Relative | Depth from soil surface to bottom of layer | −0.5–0.5 |
23 | SURLAG.bsn | Replace | Surface runoff lag time | 0–25 |
1 | NDTARGR | Replace | Number of days the reservoir would be filled (days) | 1–365 |
2 | RES_K | Replace | Hydraulic conductivity of the reservoir bottom (m/s) | 10−2–11 |
Metric | Equation | Optimal Value | Evaluation Range | |
---|---|---|---|---|
Product Performance Metrics | POD | 1 | ||
CSI | 1 | |||
FAR | 0 | |||
CC | 1 | |||
RB | 0 | |||
RMSE | 0 | |||
Streamflow Performance Metrics | NSE | 1 | ||
PBIAS | 0 | |||
R2 | 1 | 0.5 |
Metric | IMERGF | MSWEP | SM2RAIN–ASCAT | |
---|---|---|---|---|
POD | Dry | 0.738 | 0.745 | 0.899 |
Wet | 0.939 | 0.927 | 0.999 | |
All | 0.887 | 0.879 | 0.972 | |
FAR | Dry | 0.322 | 0.362 | 0.538 |
Wet | 0.042 | 0.059 | 0.087 | |
All | 0.120 | 0.148 | 0.264 | |
CSI | Dry | 0.546 | 0.524 | 0.439 |
Wet | 0.902 | 0.876 | 0.912 | |
All | 0.791 | 0.763 | 0.721 | |
CC | Dry | 0.794 | 0.566 | 0.624 |
Wet | 0.705 | 0.363 | 0.608 | |
All | 0.745 | 0.458 | 0.697 | |
RB | Dry | 0.472 | 0.651 | 0.130 |
Wet | −0.063 | −0.229 | −0.265 | |
All | 0.026 | −0.083 | −0.195 | |
RMSE | Dry | 3.964 | 7.347 | 5.321 |
Wet | 6.557 | 10.029 | 6.943 | |
All | 5.665 | 8.801 | 5.976 |
Product | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
NSE | PBIAS | RMSE | R2 | NSE | PBIAS | RMSE | R2 | |
Daily | ||||||||
Rain gauge | 0.67 | −12.43 | 62.99 | 0.68 | 0.63 | −13.48 | 44.85 | 0.80 |
IMERGF | 0.60 | −13.57 | 69.39 | 0.62 | 0.36 | −37.19 | 30.11 | 0.50 |
MSWEP | 0.36 | 5.08 | 87.18 | 0.40 | 0.15 | −22.39 | 34.74 | 0.20 |
SM2RAIN | 0.68 | −6.94 | 50.83 | 0.68 | 0.38 | −36.50 | 63.86 | 0.49 |
Monthly | ||||||||
Rain gauge | 0.77 | −12.60 | 43.76 | 0.79 | 0.72 | −13.59 | 31.05 | 0.88 |
IMERGF | 0.71 | −13.83 | 48.71 | 0.75 | 0.52 | −37.44 | 40.75 | 0.69 |
MSWEP | 0.49 | 4.69 | 64.93 | 0.52 | 0.15 | −22.79 | 53.99 | 0.22 |
SM2RAIN | 0.76 | −7.11 | 37.91 | 0.80 | 0.49 | −36.88 | 44.27 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.-N.-D.; Nguyen, B.Q.; Zhang, R.; Aryal, A.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam. Remote Sens. 2023, 15, 1030. https://doi.org/10.3390/rs15041030
Tran T-N-D, Nguyen BQ, Zhang R, Aryal A, Grodzka-Łukaszewska M, Sinicyn G, Lakshmi V. Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam. Remote Sensing. 2023; 15(4):1030. https://doi.org/10.3390/rs15041030
Chicago/Turabian StyleTran, Thanh-Nhan-Duc, Binh Quang Nguyen, Runze Zhang, Aashutosh Aryal, Maria Grodzka-Łukaszewska, Grzegorz Sinicyn, and Venkataraman Lakshmi. 2023. "Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam" Remote Sensing 15, no. 4: 1030. https://doi.org/10.3390/rs15041030
APA StyleTran, T. -N. -D., Nguyen, B. Q., Zhang, R., Aryal, A., Grodzka-Łukaszewska, M., Sinicyn, G., & Lakshmi, V. (2023). Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam. Remote Sensing, 15(4), 1030. https://doi.org/10.3390/rs15041030