Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Methods
2.2. Model and Experimental Design
3. Results and Discussion
3.1. Overview of the Event
3.2. CDHE Evaluation for the Control
3.3. ISOs’ Influence on the CDHE in PLF Trials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; p. 8. [Google Scholar]
- Zhang, H.; Wang, E.L.; Zhou, D.W.; Luo, Z.K.; Zhang, Z.X. Rising soil temperature in china and its potential ecological impact. Sci. Rep. 2016, 6, 8. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, H.; Li, C.; Tian, F. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China. Sci. Rep. 2018, 8, 16700. [Google Scholar] [CrossRef]
- Jiang, W.X.; Wang, L.C.; Feng, L.; Zhang, M.; Yao, R. Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China. Int. J. Climatol. 2020, 40, 3380–3397. [Google Scholar] [CrossRef]
- Kong, Q.; Guerreiro, S.B.; Blenkinsop, S.; Li, X.-F.; Fowler, H.J. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extrem. 2020, 28, 100242. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Amplifying effect of ENSO on heat waves in China. Clim. Dyn. 2019, 52, 3277–3289. [Google Scholar] [CrossRef]
- Gao, T.; Luo, M.; Lau, N.C.; Chan, T.O. Spatially Distinct Effects of Two EL Nino Types on Summer Heat Extremes in China. Geophys. Res. Lett. 2020, 47, 9. [Google Scholar] [CrossRef]
- Wei, J.; Wang, W.G.; Shao, Q.X.; Yu, Z.B.; Chen, Z.F.; Huang, Y.; Xing, W.Q. Heat wave variations across China tied to global SST modes. J. Geophys. Res.-Atmos. 2020, 125, 22. [Google Scholar] [CrossRef]
- Cao, D.R.; Xu, K.; Huang, Q.L.; Tam, C.Y.; Chen, S.; He, Z.Q.; Wang, W.Q. Exceptionally prolonged extreme heat waves over South China in early summer 2020: The role of warming in the tropical Indian Ocean. Atmos. Res. 2022, 278, 11. [Google Scholar] [CrossRef]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Large-Scale Circulation Anomalies and Intraseasonal Oscillations Associated with Long-Lived Extreme Heat Events in South China. J. Clim. 2018, 31, 213–232. [Google Scholar] [CrossRef]
- Hong, J.L.; Ke, Z.J.; Yuan, Y.; Shao, X. Boreal Summer Intraseasonal Oscillation and Its Possible Impact on Precipitation over Southern China in 2019. J. Meteorol. Res. 2021, 35, 571–582. [Google Scholar] [CrossRef]
- Chen, J.P.; Wen, Z.P.; Wu, R.G.; Chen, Z.S.; Zhao, P. Influences of northward propagating 25–90-day and quasi-biweekly oscillations on eastern China summer rainfall. Clim. Dyn. 2015, 45, 105–124. [Google Scholar] [CrossRef]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Evolution of the Circulation Anomalies and the Quasi-Biweekly Oscillations Associated with Extreme Heat Events in Southern China. J. Clim. 2016, 29, 6909–6921. [Google Scholar] [CrossRef]
- Ding, T.; Ke, Z.J. Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theor. Appl. Climatol. 2015, 122, 651–665. [Google Scholar] [CrossRef]
- Hsu, P.C.; Lee, J.Y.; Ha, K.J.; Tsou, C.H. Influences of Boreal Summer Intraseasonal Oscillation on Heat Waves in Monsoon Asia. J. Clim. 2017, 30, 7191–7211. [Google Scholar] [CrossRef]
- Lu, X.J.; Fang, J.B.; Yang, X.Q.; Hu, H.B. Intra-seasonal summer precipitation anomaly over eastern China and evolution characteristics of its associated tropical and mid-to-high latitudes atmospheric circulation. Acta Meteorol. Sin. 2022, 80, 1–20. (In Chinese) [Google Scholar] [CrossRef]
- Rummukainen, M. Added Value in Regional Climate Modeling; Wiley Interdiscip: Hoboken, NJ, USA, 2016; Volume 7, pp. 145–159. [Google Scholar]
- Hu, W.T.; Duan, A.M.; Li, Y.; He, B. The Intraseasonal Oscillation of Eastern Tibetan Plateau Precipitation in Response to the Summer Eurasian Wave Train. J. Clim. 2016, 29, 7215–7230. [Google Scholar] [CrossRef]
- Shi, H.; Yu, J.H.; Wang, C.X.; Qiu, Z.D. Influence of boreal summer intraseasonal oscillation on tropical cyclone heavy rain in southeastern coast China. J. Meteorol. Sci. 2018, 38, 11–18. (In Chinese) [Google Scholar] [CrossRef]
- NDRCC: Basic Situation of Natural Disasters in August 2022. Available online: http://www.ndrcc.org.cn/zqtj/27015.jhtml (accessed on 28 October 2022).
- Yang, H.; Wang, B. Multiscale processes in the genesis of a near-equatorial tropical cyclone during the Dynamics of the MJO Experiment: Results from partial lateral forcing experiments. J. Geophys. Res. D Atmos. 2018, 123, 5020–5037. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.N.; Hupy, J.P.; Wang, Y.; Shao, G.F. A commentary review on the use of normalized difference vegetation index (ndvi) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Didan, K. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Jayakumar, D.; Sathish, K.D.; Thendiyath, R. Integrating Disaster Science and Management; Elsevier Science: Amsterdam, The Netherland, 2018; ISBN 978-0-12-812056-9. [Google Scholar]
- Qi, X.; Yang, J. Extended-range prediction of a heat wave event over the Yangtze River Valley: Role of intraseasonal signals. J. Geo-Phys. Res. Atmos. 2019, 12, 451–457. [Google Scholar] [CrossRef]
- Xie, W.S.; Zhang, Q.; Li, W.; Wu, B.W. Analysis of the Applicability of Drought Indexes in the Northeast, Southwest and Middle-lower Reaches of Yangtze River of China. Plateau Meteorol. 2021, 40, 1136–1146. (In Chinese) [Google Scholar] [CrossRef]
- GB/T 20481-2017; Grades of Meteorological Drought. International Organization for Standardization: Beijing, China, 2017.
- Thornthwaite, C.W. An approach toward a rational classification of climate. Soil Sci. 1948, 66, 77. [Google Scholar] [CrossRef]
- Yanai, M.; Esbensen, S.; Chu, J.H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 1973, 30, 611–627. [Google Scholar] [CrossRef]
- Wang, L.J.; Dai, A.G.; Guo, S.H.; Ge, J. Establishment of the south asian high over the indo-china peninsula during late spring to summer. Adv. Atmos. Sci. 2017, 34, 169–180. [Google Scholar] [CrossRef]
- Lu, C.H.; Shen, Y.C.; Li, Y.H.; Xiang, B.; Qin, Y.J. Role of intraseasonal oscillation in a compound drought and heat event over the middle of the yangtze river basin during midsummer 2018. J. Meteorol. Res. 2022, 36, 643–657. [Google Scholar] [CrossRef]
- Shi, C.H.; Jin, X.; Liu, R.Q. The differences in characteristics and applicability among three types of Rossby wave activity flux in atmospheric dynamics. Trans. Atmos. Sci. 2017, 40, 850–855. (In Chinese) [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G. A Description of the Advanced Research WRF Version 4; NCAR Tech. Note NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019; 145p. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Collins, W.; Rasch, P.; Boville, B.; McCaa, J.; Williamson, D.; Kiehl, J.; Briegleb, B.; Bitz, C.; Lin, S.-J.; Zhang, M.; et al. Description of the NCAR Community Atmosphere Model (CAM 3.0); NCAR Tech. Note NCAR/TN-464+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2004; 214p. [Google Scholar]
- Janjić, Z.I. Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso Model; NCEP Office Note; National Centers for Environmental Prediction: College Park, MD, USA, 2002; 61p.
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Janjić, Z.I. Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci. 2000, 57, 3686. [Google Scholar] [CrossRef]
- Yang, H.W.; Wang, B. Partial lateral forcing experiments reveal how multi-scale processes induce devastating rainfall: A new application of regional modeling. Clim. Dyn. 2015, 45, 1157–1167. [Google Scholar] [CrossRef]
- Xukai, Z.; Rong, G.; Xianyan, C.; Ling, W.; Wei, L.; Wenting, G.; Qiang, Z. Monitoring and assessment of summer drought in the Yangtze River basin in 2022. China Flood Drought Manag. 2022, 32, 12–16. (In Chinese) [Google Scholar] [CrossRef]
- Joseph, S.; Sahai, A.K.; Chattopadhyay, R.; Goswami, B.N. Can El Niño–Southern Oscillation (ENSO)events modulate intraseasonal oscillations of Indian summer monsoon? J. Geophys. Res. 2011, 116, D20123. [Google Scholar] [CrossRef]
- Yang, L.Y.; Wang, S.Y.; Fu, C.B. The Review of the Influence of Sub-Seasonal Oscillation on Precipitation over the Qinghai-Xizang (Tibetan) Plateau and its Downstream East Asian Monsoon Region. Plateau Meteorol. 2021, 40, 1432–1442. (In Chinese) [Google Scholar] [CrossRef]
Level | Type | MCI |
---|---|---|
1 | No drought | |
2 | Light drought (I) | |
3 | Moderate drought (II) | |
4 | Severe drought (III) | |
5 | Extreme drought (IV) |
Control | RMV-N | RMV-SE | RMV-NSE | |
---|---|---|---|---|
Domain | 24°–36°N, 104°–120°E | 24°–36°N, 104°–120°E | 24°–36°N, 104°–120°E | 24°–36°N, 104°–120°E |
ISO Removed | Unprocessed | Northern Boundary | Southern and Eastern Boundary | N, S, and E Boundary |
Initial field | Original field generated from ERA5 data | Same as Control | Same as Control | Same as Control |
Boundary field | Original field generated from ERA5 data | ISO removed from N Boundary | ISO removed from SE Boundary | ISO removed from NSE Boundary |
Physical Parameterization | Refer to paragraph one of Section 2.2 | Same as Control | Same as Control | Same as Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Qin, Y.; Shen, Y.; Li, Y.; Xiang, B. Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022. Remote Sens. 2023, 15, 892. https://doi.org/10.3390/rs15040892
Qin Y, Qin Y, Shen Y, Li Y, Xiang B. Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022. Remote Sensing. 2023; 15(4):892. https://doi.org/10.3390/rs15040892
Chicago/Turabian StyleQin, Yi, Yujing Qin, Yichen Shen, Yonghua Li, and Bo Xiang. 2023. "Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022" Remote Sensing 15, no. 4: 892. https://doi.org/10.3390/rs15040892
APA StyleQin, Y., Qin, Y., Shen, Y., Li, Y., & Xiang, B. (2023). Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022. Remote Sensing, 15(4), 892. https://doi.org/10.3390/rs15040892