Quantitative Analysis of Land Use and Land Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in West Bengal, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Land Use/Cover Mapping Based on Digital Classification
2.2.2. Reconfiguration Detection of Land Use/Cover Categories through Time
2.2.3. Calculation of Change Index
2.2.4. Decision-Making Trial and Evaluation Laboratory (DEMATEL) Methodology
- i.
- Finding the direct-relation (Average) matrix:
- ii.
- Calculation of the normalized initial direct-relation matrix:
- iii.
- Calculation of total relation matrix:
- iv.
- Calculation of Influential relational map (IRM):
2.2.5. Jaccard Similarity Index
2.2.6. Adherence Index
3. Results and Discussion
3.1. Status of Land Use/Cover Classification
3.2. Land Use/Cover Scenario
3.3. Land Use-Land Cover Changes and Reconfiguration
3.3.1. Temporal Shifting of Mean Centers of Each LULC Element
3.3.2. Study on the Annual Rate of Areal Change and Areal Loss and Gain Temporally
3.3.3. Study on Change Index Per LULC Elements
3.3.4. Identification of Cause-Effect Chain among LULC Elements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, B.; Bai, X.; Zhao, C.; Tan, Q.; Li, Y.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Responses of carbon and water use efficiencies to climate and land use changes in China’s karst areas. J. Hydrol. 2023, 617, 128968. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing. China. Sustainability 2015, 7, 4260–4279. [Google Scholar]
- Li, X.; Yeh, A.G.O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar]
- Maktav, D.; Erbek, F.S.; Jurgens, C. Remote sensing of urban areas. Int. J. Remote Sens. 2005, 26, 655–659. [Google Scholar]
- Maktav, D.; Erbek, F.S. Analysis of urban growth using multi-temporal satellite data in Istanbul, Turkey. Int. J. Remote Sens. 2005, 26, 797–810. [Google Scholar]
- Berlanga-Robles, C.A.; Ruiz-Luna, A. Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. J. Coast. Res. 2002, 18, 514–522. [Google Scholar]
- Sharma, K.D.; Singh, S.; Singh, N.; Bohra, D.N. Satellite remote sensing for detecting the temporal changes in the grazing lands. J. Indian Soc. Remote Sens. 1989, 17, 55–59. [Google Scholar]
- Luong, P.T. The detection of land use/land cover changes using remote sensing and GIS in Vietnam. Asian-Pac. Remote Sens. J. 1993, 5, 63–66. [Google Scholar]
- Turner, B.L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change; Science/Research Plan; IGBP Report No.35, HDP Report No.7; IGBP: Stockholm, Sweden; HDP: Geneva, Switzerland, 1995. [Google Scholar]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sen. Environ. 2005, 98, 317–328. [Google Scholar]
- Brondizio, E.S.; Moran, E.F.; Mausel, P.; Wu, Y. Land Use Change in the Amazon Estuary: Patterns of Caboclo Settlement and Landscape Management. Hum. Ecol. 1994, 22, 249–278. [Google Scholar]
- Kachhwala, T.S. Temporal monitoring of forest land for change detection and forest cover mapping through satellite remote sensing. In Proceedings of the 6th Asian Conference on Remote Sensing, Hyderabad, India, 21–26 November 1985; pp. 77–83. [Google Scholar]
- Chilar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114. [Google Scholar]
- Lo, C.P.; Choi, J. A hybrid approach to urban land use/cover mapping using Landsat 7 enhanced thematic mapper plus (ETM+) images. Int. J. Remote Sens. 2004, 25, 2687–2700. [Google Scholar]
- Singh, P.; Thakur, J.K.; Kumar, S.; Singh, U.C. Assessment of Land Use/Land Cover Using Geospatial Techniques in a Semi-arid Region of Madhya Pradesh, India. In Geospatial Techniques for Managing Environmental Resources; Thakur, J.K., Singh, S.K., Ramanathan, A., Prasad, M.B.K., Gossel, W., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Thakur, J.K. Eco-Hydrological Wetland Monitoring in a Semi-Arid Region (A Case Study of Konya Closed Basin, Turkey); Faculty of International Institute for Geo-Information Science and Earth Observation (ITC), Universiteit Twente: Enschede, The Netherlands, 2010. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar]
- El Bastawesy, M. Hydrological Scenarios of the Renaissance Dam in Ethiopia and Its Hydro-Environmental Impact on the Nile Downstream. J. Hydraul. Eng. 2015, 20. [Google Scholar] [CrossRef]
- Kumar, J.A.V.; Pathan, S.K.; Bhanderi, R.J. Spatio-temporal analysis for monitoring urban growth—A case study of Indore city. J. Indian Soc. Remote Sens. 2007, 35, 11–20. [Google Scholar]
- Tejaswini, N.B. Land use/Land cover mapping in the coastal area of North Karnataka using remote sensing data. J. Indian Soc. Remote Sens. 2005, 33, 253–257. [Google Scholar]
- Rao, D.P.; Gautam, N.C.; Nagaraja, R.; Ram, M.P. IRS-1C applications in land use mapping and planning. Curr. Sci. 2005, 70, 575–581. [Google Scholar]
- Mukherjee, S.; Shashtri, S.; Singh, C.; Srivastava, P.; Gupta, M. Effect of canal on land use/land cover using remote sensing and GIS. J. Indian Soc. Remote Sens. 2009, 37, 527–537. [Google Scholar]
- Srivastava, P.; Mukherjee, S.; Gupta, M. Impact of Urbanization on Land Use/Land Cover Change using Remote Sensing and GIS: A Case Study. J. Ecol. Econ. Stat. 2010, 18, 106–117. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar]
- Lama, G.F.C.; Errico, A.; Pasquino, V.; Mirzaei, S.; Preti, F.; Chirico, G.B. Velocity uncertainty quantification based on Riparian vegetation indices in open channels colonized by Phragmites australis. J. Ecohydraul. 2022, 7, 71–76. [Google Scholar] [CrossRef]
- Khan, M.A.; Sharma, N.; Lama, G.F.C.; Hasan, M.; Garg, R.; Busico, G.; Alharbi, R.S. Three-Dimensional Hole Size (3DHS) Approach for Water Flow Turbulence Analysis over Emerging Sand Bars: Flume-Scale Experiments. Water 2022, 14, 1889. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Crimaldi, M.; Pasquino, V.; Padulano, R.; Chirico, G.B. Bulk Drag Predictions of Riparian Arundo donax Stands through UAV-acquired Multispectral Images. Water 2021, 13, 1333. [Google Scholar] [CrossRef]
- Sadeghifar, T.; Lama, G.F.C.; Sihag, P.; Bayram, A.; Kisi, O. Wave height predictions in complex sea flows through soft computing models: Case study of Persian gulf. Ocean Eng. 2022, 245, 110467. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Sadeghifar, T.; Azad, M.T.; Sihag, P.; Kisi, O. On the Indirect Estimation of Wind Wave Heights over the Southern Coasts of Caspian Sea: A Comparative Analysis. Water 2022, 4, 843. [Google Scholar] [CrossRef]
- Rundquist, D.C.; Narumalani, S.; Narayanan, R.M. A review of wetlands remote sensing and defining new considerations. Remote Sens. Rev. 2001, 20, 207–226. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Zhang, J. A study on wetland classification model of remote sensing in the Sanjiang plain. Chin. Geogr. Sci. 2000, 10, 68–73. [Google Scholar] [CrossRef]
- Ang, X.; Lan, R.; An, Q.Y. Change Detection Based on Remote Sensing Information Model and Its Application on Coastal Line of Yellow River Delta; Earth Observation Center, NASDA: Beijing, China, 1999. [Google Scholar]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar]
- Macleod, R.D.; Congalton, R.G. A Quantitative Comparison of Change Detection Algorithms for Monitoring Eelgrass from Remotely Sensed Data. Photogramm. Eng. Remote Sens. 1998, 64, 207–216. [Google Scholar]
- Sahana, M.; Hong, H.; Sajjad, H. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Sci. Total Environ. 2018, 628, 1557–1566. [Google Scholar] [CrossRef]
- Census of India. Primary Census Abstract, Census of India. Gov’t. of India. 2011. Available online: https://censusindia.gov.in/census.website/data/census-tables (accessed on 5 December 2021).
- “Kolkata Metropolitan Area”. KMA Map, Annual Report. 2011; Kolkata Metropolitan Development Authority (KMDA). Available online: https://nmcg.nic.in/writereaddata/fileupload/56_Expression_of_Interest_KMA.pdf (accessed on 5 December 2021).
- UN. World Urbanization Prospects: Database. 2007. Available online: http://www.un.org/esa/population/publications/WUP2005/2005WUP_DataTables11.pdf (accessed on 5 December 2021).
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar]
- Sugiyama, M. The Study on Climate Impact Adaptation and Mitigation in Asian Coastal Mega Cities of Integrated Research System for Sustainability Science; Final Report to JICA; University of Tokyo: Tokyo, Japan, 2008. [Google Scholar]
- Gandhi, R. Patel. A Life; Navjivan Trust: Ahmedabad, India, 1992; p. 497. [Google Scholar]
- Trillin, C. Last days of the rickshaw. Natl. Geogr. 2008, 21, 100–104. [Google Scholar]
- Harris, P.M.; Ventura, S.J. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogramm. Eng. Remote Sens. 1995, 61, 993–998. [Google Scholar]
- Li, Q.; Weng, D. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogramm. Eng. Remote Sens. 2005, 71, 1275–1284. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Owojori, A.; Xie, H. Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In Proceedings of the 5th International Symposium on Remote Sensing of Urban Areas, Tempe, Arizona, May 2005. [Google Scholar]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Hardin, P.J.; Jackson, M.W.; Otterstrom, S.M. Mapping, measuring, and modeling urban growth. In Geo-Spatial Technologies in Urban Environments: Policy, Practice and Pixels, 2nd ed.; Jensen, R.R., Gatrell, J.D., McLean, D., Eds.; Springer: Verlag, Heidelberg, 1986; pp. 141–176. [Google Scholar]
- Lea, C.; Curtis, A.C. Thematic Accuracy Assessment Procedures: National Park Service Vegetation Inventory, Version 2.0; Natural Resource Report 2010, NPS/2010/NRR–2010/204; National Park Service: Fort Collins, CO, USA, 2010.
- Araya, Y.H. Urban Land Use Change Analysis and Modelling: A Case Study of Setubal and Sesimbra, Portugal. Master’s Thesis, Institute for Geoinformatics, University of Munster, Munster, Germany, 2009. [Google Scholar]
- Miller, A.B.; Bryant, E.S.; Birnie, R.W. An analysis of land cover changes in the Northern Forest of New England using multitemporal Landsat MSS data. Int. J. Remote Sens. 1998, 19, 245–265. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, B.; Zhou, C. Detecting and modelling dynamic landuse change using multitemporal and multi-sensor imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 34, 697–702. [Google Scholar]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Chirico, G.B.; Preti, F. Hydraulic Modeling of Field Experiments in a Drainage Channel Under Different Riparian Vegetation Scenarios. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 69–77. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Comparative analysis of modelled and measured vegetative Chézy’s flow resistance coefficients in a drainage channel vegetated by dormant riparian reed. In Proceedings of the International IEEE Workshop on Metrology for Agriculture and Forestry, Portici, Italy, 24–26 October 2019; pp. 180–184. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Rillo Migliorini Giovannini, M.; Errico, A.; Mirzaei, S.; Chirico, G.B.; Preti, F. The impacts of Nature Based Solutions (NBS) on vegetated flows’ dynamics in urban areas. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 58–63. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel. Geosciences 2020, 10, 47. [Google Scholar] [CrossRef]
- Errico, A.; Lama, G.F.C.; Francalanci, S.; Chirico, G.B.; Solari, L.; Preti, F. Flow dynamics and turbulence patterns in a drainage channel colonized by common reed (Phragmites australis) under different scenarios of vegetation management. Ecol. Eng. 2019, 133, 39–52. [Google Scholar] [CrossRef]
- Padulano, R.; Lama, G.F.C.; Rianna, G.; Santini, M.; Mancini, M.; Stojiljkovic, M. Future rainfall scenarios for the assessment of water availability in Italy. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; pp. 241–246. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Rillo Migliorini Giovannini, M.; Errico, A.; Mirzaei, S.; Padulano, R.; Chirico, G.B.; Preti, F. Hydraulic Efficiency of Green-Blue Flood Control Scenarios for Vegetated Rivers: 1D and 2D Unsteady Simulations. Water 2021, 13, 2620. [Google Scholar] [CrossRef]
- Crimaldi, M.; Lama, G.F.C. Impacts of riparian plants biomass assessed by UAV-acquired multispectral images on the hydrodynamics of vegetated streams. In Proceedings of the 29th European Biomass Conference and Exhibition, Online, 26–29 April 2021; pp. 1157–1161. [Google Scholar] [CrossRef]
- Unigarro Villota, S.; Ghisalberti, M.; Philip, J.; Branson, P. Characterising the three-dimensional flow in partially vegetated channels. Water Resour. Res. 2023, 59, e2022WR032570. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Crimaldi, M. Assessing the role of Gap Fraction on the Leaf Area Index (LAI) estimations of riparian vegetation based on Fisheye lenses. In Proceedings of the 29th European Biomass Conference and Exhibition, Online, 26–29 April 2021; pp. 1172–1176. [Google Scholar] [CrossRef]
- Pirone, D.; Cimorelli, L.; Del Giudice, G.; Pianese, D. Short-term rainfall forecasting using cumulative precipitation fields from station data: A probabilistic machine learning approach. J. Hydrol. 2023, 617, 128949. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Crimaldi, M.; De Vivo, A.; Chirico, G.B.; Sarghini, F. Eco-hydrodynamic characterization of vegetated flows derived by UAV-based imagery. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 273–278. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Chirico, G.B. Effects of reed beds management on the hydrodynamic behaviour of vegetated open channels. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; pp. 149–154. [Google Scholar] [CrossRef]
- Santoro, M.; Hassenrück, C.; Labrenz, M.; Hagemann, M. Acclimation of Nodularia spumigena CCY9414 to inorganic phosphate limitation–Identification of the P-limitation stimulon via RNA-seq. Front. Microbiol. 2023, 13. [Google Scholar] [CrossRef]
Year | Sensor | Path/Row | Band Count | Spatial Resolution | Radiometric Resolution |
---|---|---|---|---|---|
1989 | TM | 138/44, 138/45 | 7 | Optical 30 m, Thermal 120 m | 8 bits |
1999 | ETM+ | 138/44, 138/45 | 9 | Optical 30 m, Thermal 60 m, Pan 15 m | 8 bits |
2009 | TM | 138/44, 138/45 | 9 | Optical 30 m, Thermal 60 m, Pan 15 m | 8 bits |
2019 | OLI, TIRS | 138/44, 138/45 | 11 | Optical 30 m, Thermal 100 m, Pan 15 m | 16 bits |
Data | Urban Built-Up | Water Body/River | Vegetation | Bare Land | Fallow Land | Home Stead with Plantation | Agricultural Land | Row Total |
---|---|---|---|---|---|---|---|---|
Urban built-up | 5314 | 35 | 0 | 0 | 415 | 0 | 0 | 5770 |
Water body/river | 2 | 4102 | 0 | 0 | 0 | 0 | 0 | 4104 |
Vegetation | 0 | 1 | 2883 | 0 | 0 | 60 | 2 | 2046 |
Bare land | 0 | 0 | 0 | 2152 | 39 | 3 | 0 | 2194 |
Fallow land | 684 | 13 | 0 | 236 | 2139 | 8 | 0 | 3080 |
Home stead with plantation | 0 | 0 | 93 | 0 | 36 | 2233 | 1 | 2363 |
Agricultural land | 0 | 0 | 16 | 10 | 0 | 0 | 576 | 602 |
Column Total | 6000 | 4151 | 2992 | 2398 | 2635 | 2304 | 579 | 21,059 |
Data | Urban Built-Up | Water Body/River | Vegetation | Bare Land | Fallow Land | Home Stead with Plantation | Agricultural Land | Row Total |
---|---|---|---|---|---|---|---|---|
Urban built-up | 5429 | 40 | 0 | 0 | 415 | 0 | 0 | 5884 |
Water body/river | 2 | 4602 | 0 | 0 | 0 | 0 | 0 | 4604 |
Vegetation | 0 | 1 | 2083 | 0 | 0 | 60 | 2 | 2146 |
Bare land | 0 | 0 | 0 | 2172 | 39 | 3 | 0 | 2194 |
Fallow land | 684 | 13 | 0 | 236 | 2639 | 8 | 0 | 3580 |
Home stead with plantation | 0 | 0 | 93 | 0 | 36 | 2243 | 1 | 2373 |
Agricultural land | 0 | 0 | 16 | 10 | 0 | 0 | 676 | 702 |
Column Total | 6000 | 4151 | 2992 | 2398 | 2635 | 2304 | 579 | 21,483 |
Data | Urban Built-Up | Water Body/River | Vegetation | Bare Land | Fallow Land | Home Stead with Plantation | Agricultural Land | Row Total |
---|---|---|---|---|---|---|---|---|
Urban built-up | 5731 | 40 | 0 | 0 | 415 | 0 | 0 | 6186 |
Water body/river | 2 | 4611 | 0 | 0 | 0 | 0 | 0 | 4613 |
Vegetation | 0 | 1 | 1183 | 0 | 0 | 60 | 2 | 1246 |
Bare land | 0 | 0 | 0 | 2872 | 39 | 3 | 0 | 2914 |
Fallow land | 684 | 13 | 0 | 236 | 2639 | 8 | 0 | 3580 |
Home stead with plantation | 0 | 0 | 93 | 0 | 36 | 2143 | 1 | 2273 |
Agricultural land | 0 | 0 | 16 | 10 | 0 | 0 | 684 | 710 |
Column Total | 6000 | 4151 | 2992 | 2398 | 2635 | 2304 | 579 | 21,522 |
Data | Urban Built-Up | Water Body/River | Vegetation | Bare Land | Fallow Land | Home Stead with Plantation | Agricultural Land | Row Total |
---|---|---|---|---|---|---|---|---|
Urban built-up | 6531 | 49 | 0 | 0 | 410 | 0 | 0 | 6990 |
Water body/river | 2 | 4611 | 0 | 0 | 0 | 0 | 0 | 4613 |
Vegetation | 0 | 1 | 1083 | 0 | 0 | 60 | 2 | 1146 |
Bare land | 0 | 0 | 0 | 2072 | 39 | 3 | 0 | 2114 |
Fallow land | 684 | 13 | 0 | 236 | 2645 | 8 | 0 | 3586 |
Home stead with plantation | 0 | 0 | 93 | 0 | 36 | 1943 | 1 | 2073 |
Agricultural land | 0 | 0 | 16 | 10 | 0 | 0 | 884 | 910 |
Column Total | 7217 | 4674 | 1192 | 2318 | 3130 | 2014 | 887 | 21,432 |
Class Name | Area in km2 | Area in Percentage | Area in km2 | Area in Percentage | Area in km2 | Area in Percentage | Area in km2 | Area in Percentage |
---|---|---|---|---|---|---|---|---|
1989 (km2) | 1989 (%) | 1999 (km2) | 1999 (%) | 2009 (km2) | 2009 (%) | 2019 (km2) | 2019 (%) | |
Agricultural land | 104.40 | 5.820 | 234.68 | 13.08 | 311.80 | 17.38 | 189.20 | 10.54 |
Bare land | 388.00 | 21.62 | 194.70 | 10.85 | 137.76 | 7.68 | 206.66 | 11.52 |
Urban built-up area | 362.71 | 20.21 | 473.36 | 26.38 | 493.85 | 27.53 | 539.10 | 30.05 |
Fallow land | 62.88 | 3.50 | 101.54 | 5.66 | 76.45 | 4.26 | 124.74 | 6.95 |
Vegetation | 182.66 | 10.18 | 187.50 | 10.45 | 224.30 | 12.50 | 174.66 | 9.73 |
Homestead with plantation | 574.89 | 32.04 | 477.75 | 26.632 | 370.54 | 20.65 | 351.18 | 19.57 |
Water bodies | 118.33 | 6.59 | 124.33 | 6.93 | 179.15 | 9.98 | 208.32 | 11.61 |
LULC Elements | 1989 to 1999 | 1999 to 2009 | 2009 to 2019 | 1989 to 2019 |
---|---|---|---|---|
Agricultural land | 9.67 (NW) | 1.48 (NE) | 1.64 (W) | 10.8 (NW) |
Bare land | 2.63 (E) | 3.49 (NW) | 3.55 (NE) | 6.00 (N) |
Urban built-up area | 2.36 (SW) | 2.41 (S) | 1.07 (SW) | 5.64 (S) |
Fallow land | 7.13 (S) | 12.29 (SE) | 9.44 (W) | 13.47 (SW) |
Vegetation | 4.72 (NE) | 3.41 (NW) | 4.11 (NE) | 7.32 (N) |
Homestead with plantation | 1.58 (S) | 3.04 (NE) | 1.57 (S) | 1.51 (E) |
Water bodies | 0.23 (NE) | 1.99 (N) | 4.21 (S) | 3.22 (SE) |
Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies | |
---|---|---|---|---|---|---|---|
Agricultural land | 1.000 | 0.558 | 0.523 | 0.565 | 0.746 | 0.200 | 0.234 |
Bare land | 1.000 | 0.874 | 0.483 | 0.928 | 0.537 | 0.721 | |
Urban built-up area | 1.000 | 0.345 | 0.777 | 0.537 | 0.578 | ||
Fallow land | 1.000 | 0.585 | 0.207 | 0.276 | |||
Vegetation | 1.000 | 0.413 | 0.556 | ||||
Homestead with plantation | 1.000 | 0.583 | |||||
Water bodies | 1.000 |
Class Name | 1989 to 1999 | 1999 to 2009 | 2009 to 2019 |
---|---|---|---|
Agricultural land | 13.865 | 3.651 | −4.369 |
Bare land | −5.535 | −3.249 | 5.557 |
Urban built-up area | 3.390 | 0.481 | 1.018 |
Fallow land | 6.830 | −2.745 | 7.017 |
Vegetation | 0.295 | 2.181 | −2.459 |
Homestead with plantation | −1.878 | −2.493 | −0.580 |
Water bodies | 0.564 | 4.899 | 1.809 |
Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies | |
---|---|---|---|---|---|---|---|
Agricultural land | 1 | ||||||
Bare land | −0.938 | 1 | |||||
Urban built-up area | 0.636 | −0.856 | 1 | ||||
Fallow land | 0.147 | −0.479 | 0.819 | 1 | |||
Vegetation | 0.791 | −0.544 | 0.114 | −0.465 | 1 | ||
Homestead with plantation | −0.687 | 0.843 | −0.948 | −0.632 | −0.312 | 1 | |
Water bodies | 0.394 | −0.579 | 0.830 | 0.601 | 0.116 | −0.927 | 1 |
Gain | Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies |
---|---|---|---|---|---|---|---|
1989 to 1999 | 192.79 | 76.08 | 196.35 | 76.63 | 96.30 | 152.72 | 27.06 |
1999 to 2009 | 209.88 | 90.02 | 151.85 | 56.50 | 189.56 | 147.46 | 73.32 |
2009 to 2019 | 104.44 | 174.15 | 174.15 | 107.80 | 204.25 | 165.22 | 78.88 |
1989 to 2019 | 171.78 | 128.94 | 290.01 | 115.06 | 151.44 | 180.73 | 112.58 |
Loss | Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies |
---|---|---|---|---|---|---|---|
1989 to 1999 | 62.51 | 269.38 | 85.70 | 37.98 | 91.46 | 249.87 | 21.06 |
1999 to 2009 | 132.76 | 146.96 | 131.35 | 81.59 | 152.76 | 254.66 | 18.49 |
2009 to 2019 | 227.05 | 96.32 | 128.90 | 59.52 | 150.46 | 223.61 | 49.72 |
1989 to 2019 | 86.98 | 310.27 | 113.61 | 53.20 | 159.44 | 404.44 | 22.59 |
1989 to 2019 | Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies |
---|---|---|---|---|---|---|---|
Agricultural land | 17.424 | 13.124 | 21.951 | 12.045 | 9.320 | 18.961 | 11.579 |
Bare land | 47.467 | 77.730 | 90.308 | 37.664 | 33.309 | 78.743 | 22.775 |
Built-up | 11.561 | 29.020 | 249.099 | 19.927 | 9.969 | 30.773 | 12.357 |
Fallow land | 9.719 | 16.569 | 12.024 | 9.681 | 3.308 | 8.273 | 3.310 |
Vegetation | 39.747 | 12.06 | 20.759 | 8.911 | 23.222 | 40.349 | 37.608 |
Homestead with plantation | 56.908 | 55.384 | 139.823 | 34.369 | 93.008 | 170.454 | 24.949 |
Water bodies | 6.371 | 2.777 | 5.141 | 2.141 | 2.525 | 3.630 | 95.742 |
1989 to 1999 | Agricultural Land | Bare Land | Urban Built up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies |
---|---|---|---|---|---|---|---|
Agricultural land | 41.893 | 15.138 | 8.19 | 10.279 | 15.433 | 12.492 | 0.979 |
Bare land | 88.299 | 118.623 | 58.199 | 45.847 | 30.202 | 44.591 | 2.237 |
Built-up | 11.292 | 15.798 | 277.014 | 9.920 | 5.121 | 37.337 | 6.225 |
Fallow land | 5.553 | 19.476 | 5.643 | 24.909 | 3.969 | 2.730 | 0.603 |
Vegetation | 19.921 | 5.631 | 4.937 | 2.601 | 91.197 | 49.822 | 8.548 |
Homestead with plantation | 65.169 | 18.956 | 114.575 | 5.479 | 37.218 | 325.03 | 8.469 |
Water bodies | 2.558 | 1.078 | 4.805 | 2.505 | 4.358 | 5.749 | 97.274 |
1999 to 2009 | Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies |
---|---|---|---|---|---|---|---|
Agricultural land | 101.923 | 31.567 | 30.131 | 9.998 | 29.328 | 25.560 | 6.180 |
Bare land | 47.952 | 47.741 | 40.276 | 29.166 | 8.069 | 17.122 | 4.377 |
Built-up | 20.912 | 5.875 | 342.010 | 5.180 | 14.865 | 76.991 | 7.530 |
Fallow land | 19.784 | 32.307 | 21.280 | 19.957 | 1.900 | 3.430 | 2.886 |
Vegetation | 68.279 | 10.793 | 8.565 | 7.174 | 34.745 | 21.441 | 36.505 |
Homestead with plantation | 49.468 | 9.144 | 45.532 | 4.212 | 130.472 | 223.088 | 15.837 |
Water bodies | 3.487 | 0.338 | 6.063 | 0.770 | 4.926 | 2.912 | 105.843 |
2009 to 2019 | Agricultural Land | Bare Land | Urban Built-up Area | Fallow Land | Vegetation | Homestead with Plantation | Water Bodies |
---|---|---|---|---|---|---|---|
Agricultural land | 84.757 | 39.714 | 37.151 | 24.535 | 34.960 | 69.594 | 21.093 |
Bare land | 19.670 | 41.446 | 22.511 | 19.274 | 5.684 | 21.827 | 7.352 |
Built-up | 10.938 | 40.183 | 364.962 | 39.007 | 3.207 | 22.556 | 13.005 |
Vegetation | 27.451 | 10.385 | 15.675 | 5.425 | 73.847 | 75.120 | 16.403 |
Fallow land | 4.921 | 21.417 | 19.229 | 16.937 | 1.333 | 4.971 | 7.648 |
Homestead with plantation | 27.281 | 46.509 | 69.269 | 16.047 | 51.118 | 146.936 | 13.383 |
Water bodies | 14.182 | 7.011 | 10.310 | 3.516 | 4.516 | 10.183 | 129.440 |
Land Use/Cover Category | Transferred | Transformed | ||||
---|---|---|---|---|---|---|
1989 to 1999 | 1999 to 2009 | 2009 to 2019 | 1989 to 1999 | 1999 to 2009 | 2009 to 2019 | |
Agricultural land | 0.021 | 0.015 | 0.008 | 0.034 | 0.058 | 0.115 |
Bare land | 0.006 | 0.006 | 0.018 | 0.200 | 0.069 | 0.049 |
Built-up | 0.007 | 0.037 | 0.006 | 0.045 | 0.047 | 0.097 |
Fallow land | 0.036 | 0.032 | 0.040 | 0.015 | 0.034 | 0.027 |
Forest | 0.012 | 0.005 | 0.011 | 0.042 | 0.077 | 0.056 |
Homestead with plantation | 0.004 | 0.009 | 0.006 | 0.135 | 0.122 | 0.108 |
Water bodies | 0.034 | 0.018 | 0.016 | 0.011 | 0.007 | 0.021 |
Land Use/Cover Category | Change Index | Adherence Index | ||||
---|---|---|---|---|---|---|
1989 to 1999 | 1999 to 2009 | 2009 to 2019 | 1989 to 1999 | 1999 to 2009 | 2009 to 2019 | |
Agricultural land | 0.634 | 0.249 | 0.075 | 24.709 | 37.301 | 33.835 |
Bare land | 0.032 | 0.087 | 0.376 | 40.715 | 28.719 | 24.066 |
Built-up | 0.149 | 0.789 | 0.062 | 66.265 | 70.720 | 70.663 |
Fallow land | 2.383 | 0.965 | 1.455 | 30.297 | 22.423 | 16.836 |
Vegetation | 0.287 | 0.059 | 0.192 | 49.275 | 16.875 | 37.019 |
Homestead with plantation | 0.029 | 0.077 | 0.056 | 61.754 | 52.597 | 40.718 |
Water bodies | 2.944 | 2.642 | 0.756 | 80.171 | 69.749 | 66.811 |
LULC | ri | cj | (ri + cj) | (ri − cj) |
---|---|---|---|---|
Agricultural land | 0.564 | 0.606 | 1.169 | −0.042 |
Bare land | 0.976 | 0.464 | 1.44 | 0.513 |
Urban built-up | 0.694 | 0.3 | 0.994 | 0.394 |
Fallow land | 0.348 | 0.856 | 1.205 | −0.508 |
vegetation | 0.12 | 1.32 | 1.44 | −1.2 |
Homestead with plantation | 1.512 | 0.133 | 1.645 | 1.378 |
Water | 0.248 | 0.782 | 1.03 | −0.534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, R.; Das, A.; Hasan, M.S.U.; Aldrees, A.; Islam, S.; Khan, M.A.; Lama, G.F.C. Quantitative Analysis of Land Use and Land Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in West Bengal, India. Remote Sens. 2023, 15, 959. https://doi.org/10.3390/rs15040959
Ray R, Das A, Hasan MSU, Aldrees A, Islam S, Khan MA, Lama GFC. Quantitative Analysis of Land Use and Land Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in West Bengal, India. Remote Sensing. 2023; 15(4):959. https://doi.org/10.3390/rs15040959
Chicago/Turabian StyleRay, Ratnadeep, Abhinandan Das, Mohd Sayeed Ul Hasan, Ali Aldrees, Saiful Islam, Mohammad Amir Khan, and Giuseppe Francesco Cesare Lama. 2023. "Quantitative Analysis of Land Use and Land Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in West Bengal, India" Remote Sensing 15, no. 4: 959. https://doi.org/10.3390/rs15040959
APA StyleRay, R., Das, A., Hasan, M. S. U., Aldrees, A., Islam, S., Khan, M. A., & Lama, G. F. C. (2023). Quantitative Analysis of Land Use and Land Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in West Bengal, India. Remote Sensing, 15(4), 959. https://doi.org/10.3390/rs15040959